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Setup

Very often we have multiple variables and we want to understand the relationship between these variables.
Perhaps surprisingly, a line can often describe the relationship quite well, if not exactly.
This is related to the idea of correlation we saw back in Chapter 1.

Example

correlation = 0.871
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If the correlation is exactly 1, then a straight line fits the data perfectly. But that is rarely ever the case
with real data.
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correlation = 1
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We want to fit the best line possible in the case where the data is not perfectly linear but a linear line is a
good approximation.

No single line can be used for the real data above.

Have to define what we mean by a “good” fit.

To estimate a line we need to estimate the intercept and the slope.

Linear Regression Equation

Linear regression gives an equation of the form

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖.

Here 𝛽0 is the intercept of the line, the 𝑦 value of the line when 𝑥 = 0.

𝛽1 is the slope of the line.

𝜖 is the error of the line, the distance from the line to each point.

Linear Regression Equation

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖.
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We call 𝑥 the explanatory or predictor variable.

We call 𝑦 the response variable.
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Estimating the line

Suppose we have a line which we use to model the data, which we will call

̂𝑦𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖.

What this says is that for each 𝑥𝑖 our line gives an estimate of 𝑦𝑖 which is the corresponding 𝑦 coordinate
on the line. This is called the fitted value

The line does not need to go through any of the actual points so

̂𝑦𝑖 ≠ 𝑦𝑖

We say the distance between the fitted point and the line is the residual

𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖.
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Parameter Estimation

We said we needed to define how to choose a “good” line.

It seems reasonable to want the residuals to be small.

We will choose to minimise the squared sum of the residuals, 𝑄 = ∑𝑛
𝑖=1 𝑒2

𝑖 .

Could also minimize ∑𝑛
𝑖=1 |𝑒𝑖|, say, but squared sum widely used, easier to do.

Conditions

Generally require 4 conditions to be true before fitting linear regression:

• There is some linear trend in the rather, not some non linearity

• The pairs (𝑥𝑖, 𝑦𝑖) are independent.

• The residuals are approximately normally distributed with mean 0. We run into problems if there are
some residuals very far from 0.

• The variance of the residuals should not change as 𝑥 changes.

We want to keep these conditions in mind every time we fit a regression.

Minimization

So want to find the values of 𝛽0, 𝛽1 which minimise

min
𝛽0,𝛽1

𝑛
∑
𝑖=1

𝑒2
𝑖 = min

𝛽0,𝛽1
𝑄(𝛽0, 𝛽1) = min

𝛽0,𝛽1

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2.

To do this we differentiate with respect to each parameter and set th derivative equal to 0.

Estimating 𝛽0

We differentiate with respect to 𝛽0

𝜕𝑄
𝜕𝛽0

= −2
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖).

Then solve for 𝛽0.

̂𝛽0 = ̄𝑦 − ̂𝛽1 ̄𝑥.
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Estimating 𝛽1

We do the same process for estimating 𝛽1.

𝜕𝑄
𝜕𝛽1

= −2
𝑛

∑
𝑖=1

𝑥𝑖(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

Then solve for 𝛽1 when the derivative is 0.

Alternative Formulation

We have
̂𝛽1 = ∑𝑛

𝑖=1(𝑥𝑖𝑦𝑖 − ̄𝑦𝑥𝑖)
∑𝑛

𝑖=1(𝑥2
𝑖 − ̄𝑥𝑥𝑖)

.

We can rewrite this in a more useful format.

Recall that

𝑐𝑜𝑣(𝑥, 𝑦) = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

and

𝜎2
𝑥 = √ 1

𝑛
𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2.

Want to rewrite ̂𝛽1 using these.

We first show that

𝑛
∑
𝑖=1

(𝑥𝑖𝑦𝑖 − ̄𝑦𝑥𝑖) =
𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦).

Similarly, we show that

𝑛
∑
𝑖=1

(𝑥2
𝑖 − ̄𝑥𝑥𝑖) =

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2
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Putting these together

That means that we have

̂𝛽1 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

If we divide both by 𝑛 we get

̂𝛽1 = 𝜎𝑥,𝑦
𝜎2𝑥

,

the covariance divided by the sample variance of 𝑥.

Using 𝑐𝑜𝑟𝑟𝑥,𝑦 = 𝜎𝑥,𝑦
𝜎𝑥,𝜎𝑦

we get

̂𝛽1 = 𝑐𝑜𝑟𝑟𝑥,𝑦
𝜎𝑦
𝜎𝑥

,

the product of the sample correlation and the sample standard deviation of 𝑦 divided by the sample standard
deviation of 𝑥.

This makes sense, higher values of correlation results in larger slopes in the fitted line.

Example

If we wanted to fit a regression to the penguin data then 𝑥 is the flipper length and 𝑦 is the body mass.

For this we can get the coefficients using the sample means and standard deviations ̄𝑥 = 200.915 ̄𝑦 = 4201.754
𝜎𝑥 = 14.062, 𝜎𝑦 = 801.955 and 𝑐𝑜𝑟𝑟𝑥,𝑦 = 0.871.

Properties of these estimators

After fitting this regression we can show that:

• ∑𝑛
𝑖=1 𝑒𝑖 = 0, the sum of the fitted residuals when the model includes an intercept term.

• The regression line will go through the point ( ̄𝑥, ̄𝑦), if there is an intercept term.

• ∑𝑛
𝑖=1 𝑥𝑖𝑒𝑖 = 0.

Unbiased

Using that 𝔼(𝑦𝑖) = 𝛽0 + 𝛽1𝑥𝑖 can also show that the estimates for both the intercept and slope are unbiased,

𝔼( ̂𝛽0) = 𝛽0, 𝔼( ̂𝛽1) = 𝛽1
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Interpretation

We said previously that we want the the residuals to be normally distributed and most importantly, to have
expected value 0.

This means that if we take the expectation of

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

that

If the fitted residuals 𝑒𝑖 also have this property then we get that

𝔼( ̂𝑦𝑖) = 𝛽0 + 𝛽1𝑥𝑖.

Suppose we want to see what the expected value of 𝑦 will be at some new 𝑥 point 𝑥𝑛𝑒𝑤, which is 1 unit
greater than 𝑥𝑖?

If 𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 1 then the expected value of 𝑦𝑛𝑒𝑤 will be

𝔼(𝑦𝑛𝑒𝑤) = 𝛽0 + 𝛽1𝑥𝑛𝑒𝑤 = 𝛽0 + 𝛽1(𝑥𝑖 + 1)

This will be the expected value at 𝑦𝑖 plus 𝛽1,

𝔼(𝑦𝑛𝑒𝑤) = 𝔼(𝑦𝑖) + 𝛽1, if 𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 1.

Definition

The slope coefficient 𝛽1 gives the change in the average value of 𝑦 as we increase the 𝑥 value by
one unit.

Similarly, the intercept term 𝛽0 gives the expected average value of 𝑦 when 𝑥 = 0, if the model is reasonable
there (will see more next).

Example

For the penguin example we get

̂𝛽0 = −5780, ̂𝛽1 = 49.686.

The intercept term not really interpretable, can’t have a flipper with 0 length.
̂𝛽1 = 49.686 means that as we increase the flipper length by 1mm, we expect the weight of penguins to

increase by 49.69 grams, on average.
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Example

We can also use the regression coefficient estimates to get the expected mean value of the 𝑦 variable at a
specific 𝑥 value.

The linear regression model says the expected value of 𝑦 for a given 𝑥 is given by

𝔼(𝑦) = ̂𝛽0 + ̂𝛽1𝑥

Using our linear regression fit, the expected body mass for a penguin with flipper length 200mm is −5780 +
49.69(200) = 4157.1 grams.

Fitted Regression Line
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Dangers of Extrapolation

While linear regression works well, it is somewhat dependent on the data you have.

Only tells you a linear model is reasonable in the range of values of initial data. No reason to think its also
valid as we move far away from those points.

Some software helps with this, wont plot the fitted line where there isn’t data.
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Example
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Residual analysis

What we have seen so far says that linear regression can be a really good model to describe linear relationships.

We have unbiased estimates for the coefficients, will show further properties.

These properties rely on the residuals looking approximately normal. As such, important to confirm the
residuals look reasonable.
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Penguin Residuals
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Bad Example
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Residuals for an incorrect model
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Variance of the Residuals Changing
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Residuals of the Fit
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Residuals

In the bad example it was pretty clear that a linear regression was incorrect from looking at the raw data.

However it may not be as clear. Important to check the residuals carefully.

Remember that the interpretation of the coefficients we gave above is only valid when the model is reasonable.

The strength of a fit

Before we said that the formula for the slope, 𝛽1, can be written in terms of the sample correlation 𝑐𝑜𝑟𝑟𝑥,𝑦.

The square of this, written as 𝑅2 is widely used to describe the strength of a linear fit.

This is a number between 0 and 1, larger values indicate a stronger relationship.

R Squared

𝑅2 describes how much variation there is about the fitted line, relative to the total variance of the 𝑦 variable.
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If we fit the model and compute the residuals 𝑒1, … , 𝑒𝑛 then with 𝑠2
𝑒 the sample variance of the residuals,

we can write

𝑅2 = 𝑠2
𝑦 − 𝑠2

𝑒
𝑠2𝑦

.

As the variance of the residuals decreases, this number will be closer to 1.

Example

R Squared = 0.759
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Penguin Data
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How R Squared varies

R Squared = 0.981
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How R Squared Varies

R Squared = 0.447
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How R Squared Varies

R Squared = 0.013
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Example

When we fit the regression to the penguin data we had 𝑐𝑜𝑟𝑟𝑥,𝑦 = 0.871 and 𝑠2
𝑦 = (801.955)2, the sample

variance of 𝑦.

We know that the 𝑅2 = 𝑐𝑜𝑟𝑟2
𝑥,𝑦 = 0.759. We can use that to compute the variance of the residuals.

0.759 = (801.955)2 − 𝑠2
𝑒

(801.955)2 .

We can solve this to get 𝑠2
𝑒 = 154994, so that the standard deviation of the residuals is 393.7. Compare this

to the standard deviation of just the y values.

We get the same answer using R, where we will go through how to fit this model below.

sd(penguin_fit$residuals)

## [1] 393.6996
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R Code for Regression

Fitting a linear regression is straightforward in most software packages.

As important is being able to understand the output from fitting a regression model

Thankfully it is reasonably straightforward.

Penguin Regression

penguin_fit <- lm(body_mass_g ~ flipper_length_mm,
data = penguins)

tidy(penguin_fit)

R Output

tidy_coefs <- tidy(penguin_fit)
print(tidy_coefs, width = 50)

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Interce~ -5781. 306. -18.9 5.59e- 55
## 2 flipper_~ 49.7 1.52 32.7 4.37e-107

summary(penguin_fit)$r.squared

## [1] 0.7589925

Confidence Intervals and Testing

The R output above gave estimates for the intercept term and the slope term, along with standard errors for
those estimates.

This is essentially all we needed to construct confidence intervals previously, along with a z score for the
chosen confidence level.

Here we would need to use a t table instead of a z table, but otherwise the procedure is identical. This would
give us, for example, 95% confidence intervals for 𝛽0 and 𝛽1, with the same interpretation as before.

We also saw before that if we constructed a confidence interval and it didn’t contain a specific value, like 0,
that was equivalent to rejecting the null hypothesis of the true value being 0.

The p values given in the output above correspond to exactly that, testing whether each parameter is zero.

A slope term which could be zero would indicate there is no linear relationship present at all!
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We can actually go a step further and build on this to get a confidence interval for the average value of 𝑦 at
a specific 𝑥 value.

Even further, we can get a prediction interval for a new 𝑦 at a specific 𝑥, but that is beyond the scope of
this course!
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