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Introduction

We now want to consider similar problem to the previous setup, but now the variables can take on all values
in some range.

For example, we want a distribution to describe height or weight, or the length of time, etc. Any quantities
which can take or continuous values.

Instead of a pmf for discrete variables, we now have a probability density function (pdf), 𝑓𝑋(𝑥), describing
the relationship between a random variable and the values in can take.

In the discrete case, we could give the exact probability of a rv taking a specific value, but we cannot do
that for continuous random variables.

To determine 𝑃(3 ≤ 𝑋 ≤ 6) we integrate the pdf over this range

𝑃(3 ≤ 𝑋 ≤ 6) = ∫
6

3
𝑓𝑋(𝑥)𝑑𝑥.

This shows that 𝑃(𝑋 = 4), say is ∫4
4 𝑓𝑋(𝑥)𝑑𝑥 = 0.

We have the same properties that we had before:

• 𝑓𝑋(𝑥) ≥ 0
• ∫𝑋 𝑓𝑋(𝑥)𝑑𝑥 = 1, where we integrate over all possible values of 𝑋.

Example

Suppose we have a random variable 𝑋 with pdf given by

𝑓𝑋(𝑥) = 2𝑒−2𝑥, 𝑥 ≥ 0.

𝑋 could be used to model the lifetime of a bulb or a machine component, in days.

What is 𝑃(𝑋 < 1), the probability fails in less than a day?

What is 𝑃(𝑋 > 2), the probability the bulb works for longer than 2 days?
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Cdf

Similar to discrete variables, the cdf 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) is given by

𝐹(𝑥) = ∫
𝑥

−∞
𝑓𝑋(𝑡)𝑑𝑡,

where we use 𝑡 as the dummy variable for integration.
Instead of the lower limit being −∞ it will be the smallest non zero value of the pdf.
We can actually get the pdf by taking the derivative of the cdf

𝑑
𝑑𝑥𝐹𝑋(𝑥) = 𝑓𝑋(𝑥).

Example

Compute the cdf of
𝑓𝑋(𝑥) = 2𝑒−2𝑥, 𝑥 ≥ 0.

Continuous CDF

Unlike the cdf of a discrete random variable, the cdf of a continuous random variable is a continuous non
decreasing function, with the same limit properties.

Expectation and Variance

The expectation and variance of continuous random variables is similar to discrete, with integrals replacing
sums.
If 𝑋 has pdf 𝑓𝑋(𝑥) then

𝔼(𝑋) = ∫
𝑋

𝑥𝑓𝑋(𝑥)𝑑𝑥.

We still have
𝔼(𝑋2) = ∫

𝑋
𝑥2𝑓𝑋(𝑥)𝑑𝑥

which can use to compute 𝑉 𝑎𝑟(𝑋),

𝑉 𝑎𝑟(𝑋) = 𝔼(𝑋2) − 𝔼(𝑋)2.

Example

For 𝑓𝑋(𝑥) = 𝑐𝑥2 on [0, 1], 0 otherwise, find the value of 𝑐 to make this a valid pdf.
Compute 𝔼(𝑋)
Compute 𝔼(𝑋2)

For 𝑓𝑋(𝑥) = 2𝑒−2𝑥, 𝑥 ≥ 0, compute 𝔼(𝑋) and 𝔼(𝑋2).
𝔼(𝑋)
𝔼(𝑋2)
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Common Distributions

Uniform Distribution

Simple distribution, where every value is equally likely between some values [𝑎, 𝑏].
pdf given by

𝑓𝑋(𝑥) = 1
𝑏 − 𝑎, 𝑎 ≤ 𝑥 ≤ 𝑏

Commonly consider 𝑎 = 0, 𝑏 = 1.

For 𝑋 ∼ 𝑈𝑛𝑖𝑓(𝑎, 𝑏) then 𝔼(𝑋) = 𝑎+𝑏
2 and 𝑉 𝑎𝑟(𝑋) = 1

12 (𝑏 − 𝑎)2.

Example

Suppose the arrival of the next subway is uniformly distributed on [0, 10] minutes, so you will never be
waiting more than 10 minutes.

• What is the expected length of time you will be waiting?

• What is the probability you will be waiting more than 8 minutes?

Exponential Distribution

Exponential distribution can be used for random variables which take on positive values, such as the length
of time you wait in line.

Has pdf given by
𝑓𝑋(𝑥) = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0.

Say 𝑋 follows an exponential distribution with parameter 𝜆.

As we sort of saw before, 𝔼(𝑋) = 1
𝜆 and 𝑉 𝑎𝑟(𝑋) = 1

𝜆2 .

The cdf is given by 𝐹𝑋(𝑥) = 1 − 𝑒−𝜆𝑥 for 𝑥 > 0.

Example

Suppose instead that you could be waiting longer than 10 minutes for the next subway, but that the mean
waiting time is still 5 minutes. If we use an exponential distribution instead, what is the probability you will
be waiting longer than 8 minutes?

Memoryless Property of Exponential Distribution

Suppose we have 𝑋 ∼ 𝐸𝑥𝑝(𝜆 = 1/24), some component in a server which on average is replaced every 24
weeks. What is the probability it lasts more than 30 weeks?
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Given that this part has lasted 100 weeks, what is the probability it will last for 30 more weeks?

To get this we have

𝑃(𝑋 > 130|𝑋 > 100) = 𝑃(𝑋 > 130, 𝑋 > 100)
𝑃(𝑋 > 100) = 𝑃(𝑋 > 130)

𝑃(𝑋 > 100) .

When we compute this, we see
𝑃(𝑋 > 130|𝑋 > 100) = 𝑃(𝑋 > 30),

which is the memoryless property of the exponential distribution.

Normal Distribution

This is the most well known and important distribution!

Can be used for real data taking on positive and negative values, such as in natural sciences.

Say 𝑋 follows a normal distribution with parameters 𝜇, 𝜎2 with pdf

𝑓𝑋(𝑥) = 1√
2𝜋𝜎2 exp (− 1

2𝜎2 (𝑥 − 𝜇)2) .

Some Normal pdfs

N(µ = 0,σ2 = 1)

N(µ = 0,σ2 = 9)

N(µ = −2,σ2 = 4)

−10 −5 0 5 10
x

4



Expectation and variance

The pdf’s above are symmetric about the value of 𝜇, and this actually means that for 𝑋 ∼ 𝒩(𝜇, 𝜎2) that

𝔼(𝑋) = 𝜇.

By doing some slightly complicated integrals, we have

𝑉 𝑎𝑟(𝑋) = 𝜎2.

Getting a mean zero variance one variable

For any random variable 𝑋 with 𝔼(𝑋) = 𝜇 and 𝑉 𝑎𝑟(𝑋) = 𝜎2 then we can make this mean zero.

Similarly, we can make it have variance 1.

So we can do both these things to make any random variable mean 0 and variance 1.

If we do this to a normal random variable, it is still normally distributed!

Transforming to a standard Normal

If we have 𝑋 ∼ 𝒩(𝜇, 𝜎2) then for

𝑍 = 𝑋 − 𝜇
𝜎 ∼ 𝒩(0, 1),

which is a Z-score, which we can compute easily.

For 𝑍 ∼ 𝒩(0, 1) then 𝑃(𝑍 ≤ 𝑧) = Φ(𝑧), where Φ is a function that you can look up.
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Area of a standard Normal

Z =1.5

−2 0 2
z

Example

Suppose 𝑍 ∼ 𝒩(0, 1). What is

• 𝑃(𝑍 < −1).

• 𝑃(𝑍 > 1.5).

• 𝑃(𝑍 < −1) or 𝑃(𝑍 > 2)

Standard Deviations from the Mean

To get the area between 2 and -2 say we can compute

Φ(2) − Φ(−2) = 0.9544.

So over 95% of values within 2 standard deviations of the mean. To get exactly 95% use 𝑧 = 1.96, which we
will see later.

Approximately 68% within 1 standard deviation, 99.7% within 3 standard deviations.
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Symmetry of the Normal CDF

−2 0 2
z

Transforming Probabilities

An extremely useful property of probability statements is we can take linear transformations and still get
the same probability, because we are still getting the probability of the same statement.

Example

Suppose SAT scores are normally distributed with mean 𝜇 = 1150 and 𝜎 = 200. What is the probability a
SAT score is less than 1200?

What is the probability a SAT score is greater than 1500?

Example

Cholesterol levels for women aged 20 to 34 follow an approximately normal distribution with mean 185
milligrams per deciliter (mg/dl). Women with cholesterol levels above 220 mg/dl are con- sidered to have
high cholesterol and about 18.5% of women fall into this category. What is the standard deviation of the
distribution of cholesterol levels for women aged 20 to 34?

Approximating using a Normal Distribution

It turns out that in many cases the normal distribution is a good approximation to other distributions, even
non continuous ones. Suppose we have a Binomial distribution with large 𝑛. If we do a histogram of 1000
draws from that distribution, we see that…
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this looks quite like a normal distribution!

In truth 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛 = 100, 𝑝 = 0.4) but we will approximate it with a normal distribution 𝑌 with mean
𝜇 = 𝑛𝑝 and variance 𝜎2 = 𝑛𝑝(1 − 𝑝). We want to compute 𝑃(𝑋 ≤ 30).
Instead of computing 𝑃(𝑋 ≤ 30) directly for the Binomial we can compute 𝑃(𝑌 ≤ 30) for 𝑌 ∼ 𝒩(40, 𝜎2 =
24). This is much easier to compute.

𝑃(𝑋 ≤ 30) = 0.0248
While 𝑃 (𝑌 ≤ 30)

Central Limit Theorem

The previous example is true more generally. For almost all distributions, if you take a large sample
𝑋1, 𝑋2, … , 𝑋𝑛 from that distribution, the mean of that sample is well approximated by a normal distribution.
The mean of that normal distribution will be 𝔼(𝑋1) and the variance will be 1

𝑛 𝑉 𝑎𝑟(𝑋1).
So you compute things about the average of data from any distribution, once you know the mean and the
variance of the distribution.
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Example

Suppose the number of times a college student checks social media in a day has mean 15 and standard
deviation 4. If you ask 100 students how many times they checked social media yesterday, what is the
probability the average number will be greater than 10?

If 𝑋1, 𝑋2, … , 𝑋100 is the number of times each student checked, we know that �̄� = 1
100 (𝑋1 +𝑋2 +…+𝑋100).

By the CLT this is approximately normally distributed with mean 15 and variance 16/𝑛.

�̄� ≈ 𝒩 (15, 𝜎2 = 16
𝑛 ) ,

and we can compute 𝑃 (�̄� > 10) similar to previous examples, by transforming to a standard normal.

Recall that if 𝑌 ∼ 𝒩(𝜇, 𝜎2) then 𝑌 −𝜇
𝜎 ∼ 𝒩(0, 1).

So

𝑃(�̄� > 10) = 𝑃 (
√𝑛(�̄� − 𝜇)

𝜎 >
√𝑛(10 − 15)

𝜎 ) = 𝑃 (𝑍 > 10(−5)
4 ) = 𝑃 (𝑍 > −12.5)

Notice, we don’t know anything about the distribution here except its mean and variance.

Recap

Joint Continuous Random Variables

We saw previously that we can have joint distributions of two discrete random variables. We can do the
same thing with continuous random variables. This means we have a joint pdf

𝑓𝑋,𝑌 (𝑥, 𝑦),

which has the same properties of a standard pdf.

To get the marginal distribution of one variable, we integrate out the other.

𝑓𝑌 (𝑦) = ∫
𝑋

𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥.

Similarly, we can get expectations of joint distributions

𝔼(𝑔(𝑋, 𝑌 )) = ∫
𝑋

∫
𝑌

𝑔(𝑥, 𝑦)𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

We say 𝑋 and 𝑌 are independent if and only if

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌 (𝑦)
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Example

Suppose 𝑋 and 𝑌 have joint pdf

𝑓𝑋,𝑌 (𝑥, 𝑦) = 6
5(𝑥 + 𝑦2), 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1.

Compute the marginals and determine if they are independent.

Compute 𝔼(𝑋).

Other Transformations

If 𝑋1 ∼ 𝒩(𝜇1, 𝜎2
1) and 𝑋2 ∼ 𝒩(𝜇2, 𝜎2

2) then

𝑋1 + 𝑋2 ∼ 𝒩(𝜇1 + 𝜇2, 𝜎2
1 + 𝜎2

2).

If 𝑋1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1) and 𝑋2 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2) then

𝑋1 + 𝑋2 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1 + 𝜆2).

If 𝑋1 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝) and 𝑋2 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑚, 𝑝) then

𝑋1 + 𝑋2 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛 + 𝑚, 𝑝).

The sum of Uniforms and Exponentials is not Uniform/Exponential. But if they are independent we can get
joint distributions easily.

Example

Suppose the lifetime of a bulb has an exponential distribution with mean 100 days.
You go to the store and buy 20 bulbs.What is the chance that at least one bulb will work for more than 200
days?
Assume the lifetime of different bulbs are mutually independent.

Want 𝑃(𝑋𝑖 > 200) for at least one 𝑖 in 1, … , 20.
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