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Time Series and Crime

library("knitr")
library("tidyverse")
theme_set(theme_minimal())



Is crime predictable?
I France created the first centralized system of crime reporting

in 1825.
I Guerry (1833) analyzed more than thirty thousand property

crimes and ten thousand personal crimes committed between
1825 and 1830.

I The incidence of (reported) crime varied considerably across
France. However, regular patterns emerged in the data.
e.g. crimes against persons consistently highest in summer,
crimes against property consistently highest in winter.

I Guerry wondered whether immutable laws—like those
describing the phenomena observed in physics—determined
crime, ultimately concluding:
“. . . the facts of the moral order, like those of the physical
order, obey invariant laws, and that, in many respects, the
judicial statistics render this a virtual certainty.”



I Andre-Michel Guerry (1802-1866) was famous in his lifetime,
winning the Montyon Prize twice. But he is largely
unappreciated today.

I Friendly (2007) believes Guerry’s modesty—both in birth and
personality—allowed others to claim credit for his discoveries.

I Nevertheless, his work (along with that of Quetelet) founded
the field of “moral statistics” and ultimately sociology and
criminology.

I Additional accomplishments: invented the polar/rose plot,
invented a mechanical calculator to compare trends, and was
mayor of his village.



Lets first construct the data Guery analysed.

# personal crimes
tibble(Year = 1825:1830,

North = c(25, 24, 23, 26, 25, 24),
South = c(28, 26, 22, 23, 25, 23),
East = c(17, 21, 19, 20, 19, 19),
West = c(18, 16, 21, 17, 17, 16),
Central = c(12, 13, 15, 14, 14, 18)) %>%

kable()

Year North South East West Central

1825 25 28 17 18 12
1826 24 26 21 16 13
1827 23 22 19 21 15
1828 26 23 20 17 14
1829 25 25 19 17 14
1830 24 23 19 16 18



# property crimes
tibble(Year = 1825:1830,

North = c(41, 42, 42, 43, 44, 44),
South = c(12, 11, 11, 12, 12, 11),
East = c(18, 16, 17, 16, 14, 15),
West = c(17, 19, 19, 17, 17, 17),
Central = c(12, 12, 11, 12, 13, 13)) %>%

kable()

Year North South East West Central

1825 41 12 18 17 12
1826 42 11 16 19 12
1827 42 11 17 19 11
1828 43 12 16 17 12
1829 44 12 14 17 13
1830 44 11 15 17 13



Next we can put these together in a dataset that we will analyse.

Guerry <-
tibble(Month =

factor(format(ISOdate(1833,1:12,1),"%b"),
levels = format(ISOdate(1833,1:12,1),"%b")),

Person = c(69, 70, 85, 78, 92, 99,
89, 95, 88, 75, 78, 82),

Property = c(96, 81, 84, 75, 77, 78,
71, 82, 80, 85, 89, 102))

Guerry %>%
top_n(4) %>%
kable()

Month Person Property

Jan 69 96
Oct 75 85
Nov 78 89
Dec 82 102



It appears that Person crimes are greater in summer, while
property crimes are greater in winter.

(guerry_plot <-
Guerry %>% gather(type, rate, -Month) %>%

ggplot(aes(x = Month, weight = rate)) +
geom_bar() + facet_wrap(~ type) +
labs(y = "number of crimes per thousand people"))
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In fact, the seasonal pattern is well approximated by a sine curve.

guerry_fit <- Guerry %>%
gather(type, rate, -Month) %>%
filter(type == "Person") %>%
mutate(x = as.numeric(Month)) %>%
lm(rate ~ cos(x*2*pi/12) + sin(x*2*pi/12),

data = .) %>% coef() %>% unname()
tibble(
"$alpha_2$" = guerry_fit[2],
"$alpha_3$" = guerry_fit[3],
"$fi$" = atan(guerry_fit[3]/guerry_fit[2]),
"$A$" = sqrt(guerry_fit[2]^2 + guerry_fit[3]^2)) %>%
kable(digits = 2)

alpha2 alpha3 fi A

-10.07 -4.18 0.39 10.91



We can look at how this curve looks overlaid on the true data.

guerry_plot +
geom_smooth(aes(as.numeric(Month), rate),

method = "lm",
formula = y ~ cos(x*2*pi/12) + sin(x*2*pi/12),
data = Guerry %>% gather(type, rate, -Month))
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Sine Regression
I Linear regression is a powerful method to understand

relationships in data.
I However, it relies on there being some linearity present which

is not always true.
I When working with time series, it is likely there will be some

patterns that repeat at certain time points.
I Sales of air conditioners are likely to increase every summer,

then decrease in the winter, etc.
I Linear regression is not suitable to capture relationships like

this.



We can easily see this with a quick example. Linear regression is
unable to capture the clear structure in the data.

dat <- tibble(t = 1:60,
y = 10 * sin(2 * pi * t / 24 + 6) +

rnorm(60))
ggplot(dat, aes(t,y)) + geom_point() +

geom_smooth(method = "lm", color = "blue", se = FALSE)
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We can get around this by essentially doing some transformation of
the data and then fitting a linear regression.

fake_plot <- ggplot(dat) + aes(t, y) + geom_point() +
geom_smooth(formula = y ~ sin(2*pi*x/24) +

cos(2*pi*x/24), color = "red",
method = "lm", se=FALSE)

fake_plot + geom_smooth(method = "lm", color = "blue",
se = FALSE)
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If we use a sinusoid curve to do this, it it parameterized by the
amplitude, frequency and the phase.

fake_fit <-
lm(y ~ sin(2*pi*t/24) + cos(2*pi*t/24), dat) %>%
coef() %>%

tibble(B = .[1], fi = atan(.[3]/.[2]),
A = sqrt(.[2]^2 + .[3]^2))



After fitting this model we can look at the fit to the data. Closely
recovers the periodic component.

fake_plot +
geom_hline(aes(yintercept = B), data = fake_fit,

linetype = 2) +
geom_segment(aes(x = 31, y = B, xend = 31, yend = B +A ),

data = fake_fit, linetype = 2)
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Given some knowledge of trigonometry, the above curve looks
something like a Sine of Cosine function. One way to do this is to
fit the data with a Sine curve

Yt = A sin (2πωt + φ) + B.

This has an interpretation, but as it is currently written, it is still
not in the form of linear regression.

To do that, we make use of the triginometric identity

sin (α+ β) = sinα cos β + cosα sinβ.



Using this, then we get

Yt = A cosφ sin(2πωt) + A sinφ cos(2πωt) + B.

Letting

X1 = sin(2πωt), X2 = cos(2πωt),
α1 = A cosφ, α2 = A sinφ,

then we have
Y = α1X1 + α2X2 + B.

This is a linear regression model in the new variables X1,X2.



I Running a linear regression on these new variables will give us
estimates α̂1, α̂2, B̂.

I We want to use these to get estimates of A, φ and ω (B is the
same in both parameterizations).

I We can again use trigonometry to get back to the original
problem.



I We have

α2
1 + α2

2 = A2
(
cos2 φ+ sin2 φ

)
= A2,

so A =
√
α2

1 + α2
2.

I Similarly,
α2
α1

= sinφ
cosφ = tanφ,

giving φ = tan−1
(

α2
α1

)
.

I So given α̂1, α̂2, B̂ we can work back to get Â, B̂ and φ̂.



What do these parameters mean?

I A is the amplitude of the wave.
I B is the overall average.
I φ is the phase, an offset term.
I ω is the frequency.
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