Markov's Inequality

Jonathan Auerbach

$$
9 / 28 / 2018
$$

Percentiles are often used to summarize distributions such as income.

- The 90 -percentile, p_{90}, is the income such that 90% of households make less than p_{90}.
- i.e. randomly select a houshold in the United States and record the income as X. If done many times: $\mathbb{P}\left(X<p_{90}\right) \approx .9$.
- $p_{.90}$ is also called the upper decile or the .9 -quantile.

What is 90-percentile household income in the United

 States?- Household income includes salaries, unemployment insurance, disability or child support payments, and personal, business, or investment income.
- It includes all residents in a house over the age of 15.

What is 90-percentile household income in the United States?

- Household income includes salaries, unemployment insurance, disability or child support payments, and personal, business, or investment income.
- It includes all residents in a house over the age of 15 .
- For reference, the average household income, μ is 70,000. Does this matter?

Markov's Inequality connects the mean and percentile of any population.

- $\mu \geq p \cdot \mathbb{P}(X>p)$ provided both X and $p \geq 0$

$$
\begin{aligned}
\mu & =\sum_{x=0}^{\infty} x \cdot \mathbb{P}(X=x) \\
& =\sum_{x=0}^{p} x \cdot \mathbb{P}(X=x)+\sum_{x=p+1}^{\infty} x \cdot \mathbb{P}(X=x) \\
& \geq \sum_{x=p+1}^{\infty} p \cdot \mathbb{P}(X=x) \\
& =p \cdot \sum_{x=p+1}^{\infty} \mathbb{P}(X=x) \\
& =p \cdot \mathbb{P}(X>p)
\end{aligned}
$$

Markov's Inequality $\mu \geq p_{90} \cdot \mathbb{P}\left(X>p_{90}\right)$

- Rearranging terms:

$$
.1=\mathbb{P}\left(X>p_{90}\right) \leq \frac{\mu}{p_{90}} \Rightarrow p_{90} \leq \frac{\mu}{1}=10 \cdot \mu
$$

- So an average income of 70,000 implies a 90 -percentile income of no more than $10 \cdot 70,000=700,000$
- We can bound the percentile just by knowing the mean!
- This is useful for many problems.

What is the probability the average of n household incomes, randomly selected from the population, is different than the population average?

- Let $Y=\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|$
- It turns out, $\mu_{y} \underset{n \rightarrow \infty}{\rightarrow} 0$, where μ_{y} is the average of Y.
- Therefore, $\mathbb{P}(Y>p) \leq \frac{\mu_{y}}{p} \underset{n \rightarrow \infty}{ } 0$
- This is known as the Weak Law of Large Numbers.

References
1.

