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Introduction

I Have talked briefly before about classification problems.
I Have some labeled training data which has some labels. Want

to learn a classifier with which we can predict labels for new
unlabeled data.

I Even better is a probabilistic classifier



Probabilistic Classifier

I Suppose we have some features X and a label we want to learn
Y .

I A probabilistic classifier will give us

P(Y |X ),

the probability Y will take a certain value, given the features X .
I Classical example is spam emails. X describes the text in the

data and a classifier tries to learn the probability an email is a
spam email, given the text it contains.

I We will assume Y is binary, so spam email or not, etc.



Bayes Rule

I P(Y |X ) is a conditional probability. In these sorts of problems,
it gives us a way to relate the quantity we need to things that
are easier to compute.

I We can express this rule as

P(A|B) = P(B|A)P(A)
P(B)

I The denominator ensures this sums to 1 and is a probability.



Bayes Rule

I If A can only take on two values (A, Ac) then

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

I Here P(A) is our prior probability of event A, before we begin
observing data.



Bayes Rule

I This rule is extremely useful for calculating complicated
conditional probabilities.

I A common example is disease testing.
I Suppose we have a medical test to determine if you have a

certain type of cancer. 0.5% of the population have this cancer.
If you have cancer, it will correctly determine you have cancer
99% of the time. If you do not have cancer, there is a 2%
chance the test will report that you do have cancer.

I Given that you take the test and get a positive result, what is
the probability you have cancer?

I Can answer this using Bayes rule.



Disease Testing
I Want to compute

P(Disease|PosTest) = P(PosTest|Disease)P(Disease)
P(PosTest)

I We know the numbers in the numerator and can compute the
denominator.

I P(PosTest|Disease) = 0.99
I P(Disease) = 0.005

P(PosTest) = P(PosTest|Disease)P(Disease)

+P(PosTest|NoDisease)P(NoDisease)

= 0.99(0.005) + (0.02)(0.995) = 0.02485.

I This gives

P(Disease|PosTest) = 0.00495
0.02485 = 0.199.



Naive Bayes

I To use Naive Bayes, we use this method along with another
approximation.

I We have
P(Y |X ) ∝ P(X |Y )P(Y )

I In applications X is complicated. For spam, it will be the
probability all words appear in an email, if it is an spam email.
For n words

P(X |Y ) = P(X1, X2, . . . , Xn|Y ).

I This can still be very complicated so we make a (naive)
assumption that

P(X |Y ) = P(X1|Y )P(X2|Y ) . . . P(Xn|Y ),

so each feature is actually independent.



Naive Bayes

I So, when we have a binary classifier, we want to estimate the
more probable class.

I If the two classes are Y = 0 and Y = 1 we can compute both

P(X1, X2, . . . , Xn|Y = 0)P(Y = 0)

and
P(X1, X2, . . . , Xn|Y = 1)P(Y = 1).

I Whichever gives the greater value is the more probable class.



Naive Bayes for Text

I To implement this for documents, are P(X |Y ) will be the word
counts within each document.

I We will actually assume a multinomial model for the word
counts. Giving the training data, we calculate the frequency of
each word in each class.

I This gives

P(X1, X2, . . . , Xn|Y = 1) ∝ pX1
11 pX2

21 . . . pXn
n1 ,

where p is the proportion from the training data and Xi is the
number of times word i appeared in the test document.



Naive Bayes for Text

I The previous number is the product of lots of very small
probabilities, so we normally do this on the log scale.

I To classify a document, we can just compare

log P(Y ) + log P(X1, X2, . . . , Xn|Y )

for Y = 0 and Y = 1.
I If we don’t know any better will just assume each outcome

equally likely initially, so P(Y = 0) = P(Y = 1) = 0.5.


