
Simulation

Owen Ward

2021-03-05

Owen G. Ward 1

Simulation and randomness occur throughout statistics and data
science. We will see how to generate this randomness and some
examples of how it can be used.

Owen G. Ward 2

Why simulation is useful

▶ Simulation is an extremely powerful method which can be
used to help solve lots of difficult problems and also to give
insights which would not be available otherwise.

▶ Statistics is the study of randomness and therefore it seems
reasonable to incorporate randomness into solving problems in
statistics and data science.

Owen G. Ward 3

More robust predictions

One simple example where simulation can be used is in making
better predictions. For example, FiveThirtyEight, which has
provided some of the best U.S election predictions in the past
decade uses simulation to give their final predictions (and add the
required uncertainty).

▶ See for example https://projects.fivethirtyeight.com/2021-
nba-predictions/?ex_cid=rrpromo

▶ Simulate several thousand games to give win projections.

Owen G. Ward 4

https://projects.fivethirtyeight.com/2021-nba-predictions/?ex_cid=rrpromo
https://projects.fivethirtyeight.com/2021-nba-predictions/?ex_cid=rrpromo

How do we do this?

Owen G. Ward 5

Generating random numbers

▶ To do simulations we need to create randomness and to do
this random numbers are needed.

▶ How can we generate random numbers? What if thousands of
numbers are needed?

▶ How have people attempted to generate random numbers in
the past?

Owen G. Ward 6

Simple random number generators?

▶ One (perhaps) obvious way to get random numbers is to flip a
coin or roll a dice. But this only gives either 0/1 or 1 to 6.

▶ Could use multiple coin flips to get random numbers in binary
and then convert. Binary numbering has been around for
centuries.

▶ People have also used what they believed to be random digits,
such as the digits of 𝜋. [1]

Owen G. Ward 7

Simple random number generators?

▶ One (perhaps) obvious way to get random numbers is to flip a
coin or roll a dice. But this only gives either 0/1 or 1 to 6.

▶ Could use multiple coin flips to get random numbers in binary
and then convert. Binary numbering has been around for
centuries.

▶ People have also used what they believed to be random digits,
such as the digits of 𝜋. [1]

Owen G. Ward 7

Simple random number generators?

▶ One (perhaps) obvious way to get random numbers is to flip a
coin or roll a dice. But this only gives either 0/1 or 1 to 6.

▶ Could use multiple coin flips to get random numbers in binary
and then convert. Binary numbering has been around for
centuries.

▶ People have also used what they believed to be random digits,
such as the digits of 𝜋. [1]

Owen G. Ward 7

More recently

▶ In the early 20th century, researchers managed to collect
random numbers by analysing random electrical pulses and
collected sequences of millions of random numbers in books
for other people to use. [2]

▶ One way to get “truly” random numbers is to look at
recordings of atmospheric noise. No idea how it is generated.
These can be accessed at https://www.random.org/

Owen G. Ward 8

https://www.random.org/

More recently

▶ In the early 20th century, researchers managed to collect
random numbers by analysing random electrical pulses and
collected sequences of millions of random numbers in books
for other people to use. [2]

▶ One way to get “truly” random numbers is to look at
recordings of atmospheric noise. No idea how it is generated.
These can be accessed at https://www.random.org/

Owen G. Ward 8

https://www.random.org/

Pseudo Random

▶ While some early computers generated true random numbers
as above, today more computers compute pseudo-random
numbers, numbers that appear random but are actually
deterministic.

▶ Generally uses a method related to number theory called the
Mersenne Twister. [3]

▶ This uses complicated number theory methods to produce
numbers that “look” random and have properties of random
numbers. These are sufficient for simulations.

Owen G. Ward 9

In R

▶ R most easily generates random numbers in the interval [0, 1].
To generate from a different range it does this and then
transforms them as appropriate.

runif(1) # generates 1 random number on [0,1]

[1] 0.9781024

runif(3, min = -5, max = 5)

[1] -4.920016 -4.797747 -3.281511

Owen G. Ward 10

runif(5, min = 0, max = 2)

[1] 1.3071228 0.2172942 1.0672699 1.1671243 0.5450690

which is basically the same method as
2*runif(5, min = 0, max = 1)

[1] 0.2764256 1.4952220 1.8433604 1.7995944 1.9703814

Owen G. Ward 11

More generally

▶ Similarly we can generate from many other statistical
distributions

rnorm(n = 3, mean = 1, sd = 2)

[1] -1.9474868 2.1600487 -0.7239727

rpois(n = 3, lambda = 2)

[1] 0 2 3

Owen G. Ward 12

When to use simulation

▶ Sometimes questions of interest are simply to difficult to
answer exactly. However, using simulation we can often (quite
easily) get approximate answers which are close to the true
answer.

▶ These can be mathematical problems (high dimensional
integrals) or more straightforward problems such as
Suppose an elevator cable will break if there are more than
1600 pounds in the elevator. If 8 people get in, what is
the probability the cable will snap?

Owen G. Ward 13

The elevator problem

Suppose an elevator cable will break if there are more than
1600 pounds in the elevator. If 8 people get in, what is
the probability the cable will snap?

▶ Well known that weights are almost normally distributed. Lets
say approximately has mean 180 pounds with standard
deviation 20 pounds.

▶ So then we just want a simulation where, many times, we pick
8 random people and see how much they weigh.

weights <- rnorm(n = 8, mean = 180, sd = 20)
sum(weights)

[1] 1499.946

Owen G. Ward 14

greater <- c(rep(0,1000))
for(i in 1:1000){
weights <- rnorm(n = 8, mean = 180, sd = 20)
if(sum(weights) > 1600){

greater[i] <- 1
}

}
sum(greater)/1000

[1] 0.001

Owen G. Ward 15

For such small probabilities might need to do more simulations to
get an accurate answer.

greater <- c(rep(0,10000))
for(i in 1:10000){

weights <- rnorm(n=8, mean = 180, sd = 20)
if(sum(weights) > 1600){

greater[i] <- 1
}

}
sum(greater)/10000

[1] 0.0019

Owen G. Ward 16

Monte Carlo Simulation

Owen G. Ward 17

Monte Carlo Simulation

▶ Suppose we didn’t know how to compute the integral

∫
1

0
𝑒𝑥𝑑𝑥

▶ We can solve this using Monte Carlo

Owen G. Ward 18

Integrals

▶ Simulate numbers randomly over the range of 𝑥, here [0, 1],
calling them 𝑥1, … , 𝑥𝑛.

▶ At each of these points we compute 𝑒𝑥

▶ Take the average of these values as our estimate
𝑇𝑛 = 1

𝑛 ∑𝑛
𝑖=1 𝑒𝑥𝑖 .

▶ As 𝑛 increases then by the Law of Large numbers 𝑇𝑛 will get
closer to the true value of the integral (𝑒 − 1).

Owen G. Ward 19

High Dimensions

▶ While this is a simple example the exact same method works
in higher dimensions, although the number of simulations
needed to get a good estimate increases at an exponential
rate.

▶ Much research is devoted to developing better ways to do
these approximations.

Owen G. Ward 20

Another example

Suppose you have two machines which make screws. In
machine 1 the lengths are normal with mean 3 inches and
standard deviation 0.5 inches. In machine 2 they have
mean 2.5 inches and standard deviation 0.75 inches. If
you pick one from each, what is the probability the screw
from machine 1 is longer?

▶ If you know something about normal distributions this is
straightforward. But can still be solved using only simulation.

Owen G. Ward 21

n <- 1000
m1 <- rnorm(n, mean = 3, sd = 0.5)
m2 <- rnorm(n, mean = 2.5, sd = 0.75)
length(which(m1 > m2))/n

[1] 0.732

Owen G. Ward 22

The Monty Hall Problem

Owen G. Ward 23

The Monty Hall Problem

This is a nice example of a problem which might appear difficult at
first, but can be easily solved with some simulation.

Suppose you’re on a game show, and you’re given the
choice of three doors: Behind one door is a car; behind
the others, goats. You pick a door, say No. 1, and the
host, who knows what’s behind the doors, opens another
door, say No. 3, which has a goat. He then says to you,
“Do you want to pick door No. 2?” Is it to your advantage
to switch your choice?

Think about it for a few minutes?

Owen G. Ward 24

The solution

▶ There are many methods to get to the solution here, including
conditional probability and explicitly working through all the
solutions. However an approximate solution can also be
obtained quite easily by simulation.

Owen G. Ward 25

R code
doors <- c("A","B","C")
outcome <- c()
for(i in 1:100){

prize <- sample(doors,1)
pick <- sample(doors,1)
open <- sample(doors[which(doors != pick &

doors != prize)],1)
switch_outcome <- doors[which(doors != pick &

doors != open)]
if(pick == prize){

outcome = c(outcome,"NoSwitchWin")
}
if(switch_outcome == prize){
outcome = c(outcome,"SwitchWin")

}
}
summary(as.factor(outcome))

NoSwitchWin SwitchWin
36 64

Owen G. Ward 26

More simulations

Try 𝑛 = 1000, 100000.

NoSwitchWin SwitchWin
360 640

NoSwitchWin SwitchWin
33160 66840

▶ Getting closer and closer to the true value, with win
probability of 2/3 if you switch.

Owen G. Ward 27

Fake data simulation

▶ This is a really simple way to check your model fits the data
well.

▶ Fit your model to the data and use the model to predict new
“fake” data.

▶ Compare this fake data to the true data and see if they look
inherently different.

▶ If they do could indicate a poor model which needs to be
updated.

Owen G. Ward 28

Accuracy

▶ How do we know that, as we take more and more simulations,
an estimate is guaranteed to get closer and closer to the true
answer?

▶ In many settings, without many assumptions, it can be shown
that these simulation estimates do get close to the true value.

▶ Simularly, this is a statistical method, so it is interesting to
see what type of distribution the estimate converges to.

▶ This can also be proved in general, by the Law of Large
Numbers and the Central Limit Theorem.

Owen G. Ward 29

Buffons Needle

Owen G. Ward 30

The problem

In the 18th century, the following problem was posed by a French
aristocrat, Georges-Louis Leclerc, Comte de Buffon.
Suppose we have a floor made of parallel strips of wood, each the
same width, and we drop a needle onto the floor. What is the
probability that the needle will lie across a line between two strips?

Owen G. Ward 31

The Problem

This is a problem in geometric probability and can be solved
exactly using calculus, to give an answer in terms of the length of
the needle 𝑙 and the gap between the strips of wood, 𝑡. For 𝑙 < 𝑡
then this probability is

𝑃 = 2𝑙
𝑡𝜋

Owen G. Ward 32

Getting the answer

▶ The distance from the center of the needle to the nearest line
is a random number between 0 and 𝑡/2. The angle between
the needle and this nearest line is random between 0 and 90
degrees (or, in radians, between 0 and 𝜋/2).

▶ The needle crosses the line if

𝑥 ≤ 𝑙
2 cos 𝜃

▶ This probability is given by

∫
𝜋/2

𝜃=0
∫

(𝑙/2) cos 𝜃

𝑥=0

4
𝑡𝜋𝑑𝑥𝑑𝜃 = 2𝑙

𝑡𝜋 ,

when the needle is shorter than the gap.

Owen G. Ward 33

Estimating Pi

Owen G. Ward 34

Estimating Pi

For centuries, people have spent time constructing ways to give
more and more accurate estimates for 𝜋, an irrational,
transcedental number which has infinite digits in it’s decimal
expansion.

Owen G. Ward 35

Estimating Pi

▶ Several methods have been devised to estimate 𝜋 numerically,
the simplest being to attempt to accurately measure the
circumference of a circle of known radius.

▶ Laplace realised in 1812 that 𝜋 could be estimated by using
the needle experiment.

▶ If 𝑛 needles are dropped and ℎ of them cross the line, then we
would estimate 𝑃 with ℎ

𝑛 and rearrange the previous equation
to give

𝜋 ≈ 2𝑙𝑛
𝑡ℎ .

Owen G. Ward 36

Doing this simulation

▶ Pick our 𝑙 < 𝑡 and the number of needles to drop 𝑛
▶ For each needle generate a random 𝑥 and 𝜃 and if

𝑥 ≤ 𝑙/2 cos 𝜃 add than needle to ℎ, the number which cross
the lines.

▶ We can do this easily in R.

Owen G. Ward 37

Some code to show this

l = 1
t = 2
n = 10000
x = runif(n, min = 0, max = t/2)
theta = runif(n, min=0, max = pi/2)
length_line = l/2*cos(theta)
h =length(which(x<length_line))
estimate = 2*l*n/(t*h)
estimate

[1] 3.075031

▶ Increasing 𝑛 will give a more accurate answer.

Owen G. Ward 38

Some problems

▶ One problem with this code is that to estimate 𝜋 we need to
use 𝜋 to simulate the random angles.

▶ How accurate is 𝑝𝑖, the estimate stored in R?
▶ Would we do better with a better estimate of 𝜋?

Owen G. Ward 39

Some problems

▶ One problem with this code is that to estimate 𝜋 we need to
use 𝜋 to simulate the random angles.

▶ How accurate is 𝑝𝑖, the estimate stored in R?

▶ Would we do better with a better estimate of 𝜋?

Owen G. Ward 39

Some problems

▶ One problem with this code is that to estimate 𝜋 we need to
use 𝜋 to simulate the random angles.

▶ How accurate is 𝑝𝑖, the estimate stored in R?
▶ Would we do better with a better estimate of 𝜋?

Owen G. Ward 39

Lazzarini

▶ In 1901, an Italian mathematician Lazzarini claimed to have
done this experiment over 3000 times by hand, getting a
correct answer to 6 decimal places.

▶ Given the intermediate numbers he recorded, the probability
of getting the answer he got it extremely small, indicating he
may have continued the experiment until he got a number he
wanted. [4][5]

Owen G. Ward 40

References

1. Are the digits of 𝜋 random? Paul Preuss https:
//www2.lbl.gov/Science-Articles/Archive/pi-random.html

2. https://www.amazon.com/Million-Random-Digits-Normal-
Deviates/dp/0833030477

3. https://en.wikipedia.org/wiki/Mersenne_Twister
4. https://en.wikipedia.org/wiki/Buffon%27s_needle
5. https://www.maa.org/sites/default/files/pdf/upload_library/

22/Allendoerfer/1995/Badger.pdf

Owen G. Ward 41

https://www2.lbl.gov/Science-Articles/Archive/pi-random.html
https://www2.lbl.gov/Science-Articles/Archive/pi-random.html
https://www.amazon.com/Million-Random-Digits-Normal-Deviates/dp/0833030477
https://www.amazon.com/Million-Random-Digits-Normal-Deviates/dp/0833030477
https://en.wikipedia.org/wiki/Mersenne_Twister
https://en.wikipedia.org/wiki/Buffon%27s_needle
https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/1995/Badger.pdf
https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/1995/Badger.pdf

	How do we do this?
	Monte Carlo Simulation
	The Monty Hall Problem
	Buffons Needle
	Estimating Pi

