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How do Scientist’s validate theories

Scientists in almost all fields collect data which they use to
validate theories. For example, chemists who develop a drug want
to be able to determine if the drug is effective at treating a specific
illness. Similarly, maybe engineers develop a new type of microchip
which they hope can withstand higher temperatures. How do they
confirm this?
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To do this, generally you need to be able to compare two (or more)
datasets and determine:

▶ If there is a difference between the two groups.
▶ If there is a difference, what is it? For a drug, does the

difference indicate a larger proportion of people are cured, or
possibly less?

▶ Is this difference significant? That is, could the difference be
explained by some randomness between the two groups?

To understand these problems, we need to know the language of
statistical significance.
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Setting Up

Suppose we have a new drug which aims to lower blood pressure,
and we wish to see if this drug is actually effective. To determine
this, we obtain a control group, who do not receive the drug, and a
treatment group, who are given this new drug. The question we
want to answer is

Do the people who receive this drug have lower blood pres-
sure on average than those who don’t?
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To do this, we need to come up with a hypothesis. In statistics,
this is known as the null hypothesis. The null hypothesis is always
the default or the norm being true, i.e that there is no difference in
average blood pressure between the two groups.
We also have an alternative hypothesis, which is the hypothesis
about the data we are interested in. For the drug example, the
alternative hypothesis would be that the average blood is lower in
the group who receive the drug.
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Informally, the idea of a hypothesis test is that we assume the null
hypothesis is true and then, given that assumption, we investigate
how likely the data we observed would occur under the null
hypothesis. If there is little evidence, we will reject the null
hypothesis. We will illustrate this with a famous example.
To do this, one common technique is to perform a statistical test
and obtain a p-value. A small p-value is seen as evidence that the
null hypothesis is not true. We will see a formal definition of the
p-value later!
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A historical example

In England in the 1700’s, John Arbuthnot decided to examine
whether male births were more likely than female births.
His null hypothesis, therefore, was that the probability more boys
are born each year is equal to the probability more girls are born in
a year. The alternative hypothesis is therefore that the probability
more boys are born is greater than the probability more girls are
born.
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He obtained 82 years of data summarizing christenings in London.
In each year, more boys were christened than girls.
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Arbuthnot reasoned that if the birth rates were equal than the
probability of more boys being born in a single year would be
equivalent to flipping a fair coin and getting heads.
Or equivalently, the probability of having more boys born each year
for 82 years would have the same probability of flipping a fair coin
82 times and getting heads each time. The probability of this
happening is essentially zero, and in this scenario corresponds to a
p-value.
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birth_data %>%
mutate(Heads = ifelse(Males - Females > 0, 1, 0)) %>%
head() %>%
kable()

Year Males Females Heads
1629 5218 4683 1
1630 4858 4457 1
1631 4422 4102 1
1632 4994 4590 1
1633 5158 4839 1
1634 5035 4820 1
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To see this, we can simulate flipping a fair coin 82 times and see
how many heads we get. This is equivalent to saying “If the null
hypothesis is true and the number of boys and girls born each year
is equal, how many years would we expect there to be more boys
being born?”

n_flips <- 82
rbinom(n = 1, size = n_flips, prob = 0.5)

## [1] 39
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What about if repeat this experiment many times and look at the
distribution of the number of heads. This is the distribution of
heads under the null hypothesis (that both are equally likely).

n_sims <- 1000
coin_sims <- tibble(sims = rbinom(n = n_sims,

size = n_flips,
prob = 0.5))

coin_sims %>% ggplot(aes(sims)) + geom_histogram()

# how does this compare to the data we have?
coin_sims %>% ggplot(aes(sims)) +

geom_histogram() + geom_vline(xintercept = 82,
color = "blue",
linetype = 2)
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So the probability of getting a result, under our null hypothesis, as
or more extreme than the one we observed, is essentially zero.
Arbuthnot thought this difference might be due to a “wise creator”
who was accounting for the risk men faced hunting. However, his
analysis does not support this.
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All it shows is that the number of male christenings is more than
the number of female christenings. It is possible (or even likely)
that there were other reasons (financial, cultural) which meant
families were less likely to christen female children.
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Difficulties with statistical significance

A p-value is a probabilistic quantity. The formal definition is given
below.
The probability of obtaining a test result as or more extreme

than the one observed, if the null hypothesis was true.
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As such, a p-value is far from a perfect metric for determining
differences. There are also many ways it can be misused.
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