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Regression to The Mean



Regression to The Mean

I Regression to the mean is a common statistical artifact
I An example of phenomena explainable by random variation
I Responsible for many mistakes in published research



Do tall parents have shorter children

I Galton (1886) recorded the heights (in inches) of 205 parents
and their 928 adult children.

I On average, men 8 percent taller than women so adjusted
womens heights to be comparable.

I Galton compared average height of a parent to average height
of each child.

I He noticed tall parents tended to have shorted children.
Declared children appeared to “regress towards mediocrity”.

I At first posited evolutionary mechanism causing tendency to
reduced variation around mean.

I Eventually figured out this was just a random effect



Sir Francis Galton (1903)

Figure 1: Galton, first cousin of Charles Darwin



Regression towards mediocrity in heriditary stature (1886)



A Testing Problem

I Imagine students take a test on calculus
I Then they are instructed to study for three more hours
I Then they take an equivalent test
I We want to use the before and after scores to judge the

effectiveness of the extra studying
I The best students might not benefit much, but we really want

to target the worst students
I So we can look at the change in the scores of the students with

lowest scores on the first test
I Suppose we see their scores all increased. Is this evidence that

the studying helped?



Simulating No Effect

I Suppose there was no effect from the additional studying
I We can simulate this
I Suppose 500 initial test scores are distributed like N(70, 8)
I Suppose the post-studying test scores are distributed like initial

scores plus some random noise ε
I Specifically suppose ε ∼ N(0, 5)
I Zero mean error corresponds to “no effect” assumption



Simulating No Effect
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How Did The Lowest Scoring Students Perform?
I We can check how the lowest scoring students on the pre-test

performed on the post-test

Histogram of score_chg

Difference in Post Test and Pre Test Score

F
re

qu
en

cy

−20 −10 0 10 20

0
5

10
15

## [1] 0.78



Not Just the Lowest Scores!
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What Happened? Regresson to The Mean!

I We expect the students who did worst on the pre-test to
improve on the post-test

I . . . even if the extra studying had no effect on their underlying
ability!

I Why? Let’s look at a picture



So, What Is Regression to The Mean?

We can summarize the lesson of regression to the mean in two ways:

I In many cases, when observing data that combine an
underlying effect with noise, the more extreme a value we
observe, the more probable it is that this value corresponds to a
less extreme underlying effect and a more extreme noise value.

I When two variables are imperfectly correlated, more extreme
values of one are associated, on average, with less extreme
values of the other.

I Not a law of nature; doesn’t always occur!
I The distribution of abilities could have a very long tail, for

example.



Regression Models



Motivation: Imperfect Correlation

I In the last section we discussed a statistical artifact arising
from imperfect correlation.

I We wanted to understand the effect of studying on ability.
I But we could not measure ability directly!
I We can think of the test score as consisting of true ability plus

some error.
I In good cases, we can get at the quantity of interest directly

(and with negligible measurement error).
I And ideally we get deterministic models like inverse square laws

in physics.
I But often this is impossible. Our tools are either too crude, or

we can’t even get direct access in principle.
I More fundamentally, can’t measure enough quantities to hope

for deterministic relationships.
I Complex phenomena are highly multi-causal.



Statistical Models

I These problems motivate considering models of the form

yi = f
(
x1

i , . . . , xk
i

)
+ εi

I yi are outcomes of interest.
I x1

i , . . . , xk
i are predictors or covariates.

I f (·) is a specified function that describes the relationship
between y and the xs

I εi are error or noise terms representing variation in y
unexplained by x

I The ys and xs are measured, but the εs are not.
I Want to infer the relationship f from the measured data.



Statistical Models

I The ys and xs are specified by the research question.
I How do we use this data to estimate f ? in

yi = f
(
x1

i , . . . , xk
i

)
+ εi

I In principle, f could be anything!
I Without any resitriction on f , this is an infinite-dimensional

inference problem!
I In general, the fewer assumption we make about f , the more

data we need to infer it accurately.
I (This is a case of a more general phenomenon called the

bias-variance tradeoff.)



Linear Regression Models

I As a starting point, we can assume that f is linear in its
predictors.

yi = α+ β1x1
i + · · ·+ βkxk

i + εi

I This is a linear regression model.
I As we will see, the methods used for these models are easily

extended to more general f .
I We will start with an even simpler form with one predictor.

yi = α+ βxi + εi

I For example, for 1 ≤ i ≤ 50, yi could be Trump’s share of the
vote in state i and xi the average share of the vote the polls
predicted Trump would win.



Fitting a Linear Regression Model
I Now estimating f just requires estimating α and β.
I But this is still not obvious! Is there one right way to do this?
I First we can look at the question deterministically.
I We can just ask which line best fits the trend in the data.
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The Best Fitting Line

I How should we think about what it means for line to fit the
data well?

I For any line y = a + bx , we can use this line to predict y values

ŷi = a + bxi

where the ·̂ symbol is used to denote a predicted value.
I Then the best line might be the one which minimizes the sum

of the distances between predictions and the true values:
n∑

i=1
|yi − ŷi |

I In the last graph, the blue line minimized this condition.



The Best Fitting Line
I Can we justify using |yi − ŷi | to measure the quality of a

prediction?
I We could consider any discrepancy function d(ŷi , yi) that

quantifies the quality of a prediction.
I For this to make sense, we would need d(ŷi , yi) ≥ 0 with

equality only if ŷi = yi .
I Furthermore, suppose that this discrepancy function is smooth

(in this case, has two derivatives).
I Then Taylor’s theorem tells us we can approximate d(ŷ , y) as a

function of ŷ with a Taylor series centered at y (the true value):

d(ŷ , y) ≈ d(y , y) + d ′(y , y)(ŷ − y) + 2d ′′(y , y)(ŷ − y)2

= 2d ′′(y , y)(ŷ − y)2

I Since the above guarantees that d(y , y) = 0 and d ′(y , y) = 0
since y minimizes d(·, y).



The Best Fitting Line

I Now again since y is a minimum, we must have d ′′(y , y) > 0
I So minimizing 2d ′′(y , y)(ŷ − y)2 is equivalent to minimizing

(ŷ − y)2.
I So for a general smooth disprepancy function d , we can

approximately minimize the sum
∑n

i=1 d(ŷi , yi) by minimizing

n∑
i=1

(ŷi − yi)2

I In the above graph, the red line minimizes this condition.
I What about the green line? It’s the true line from which the

data were generated!



Introducing Probability

I The previous discussion was entirely deterministic.
I Phrased our problem as an optimization problem.
I What if we think of the points as being randomly scattered

around the true line?
I This corresponds to thinking of errors εi as having some

probability distribution.
I But we still have a choice: what distribution do we think εi

has?



Error Distributions

I Often reasonable to think of errors as arising from a series of
independent chance effects.

I For instance, a product moving down an assembly line.
I Each machine has some level of imprecision in its operation.
I Each question on a test is an imperfect measure of knowledge

of a concept.
I A sum of many independent small chance effects have an

approximately normal distirbution.
I By the central limit theorem!
I So we often take εi

iid∼ normal(0, σ)



From Distributions to Fitting Procedures
I If εi are normal, then we have yi

iid∼ normal(α+ βxi , σ)
I Recall that the normal distribution has density

f (x | µ, σ) = 1√
2πσ2

e−
1

2σ2 (x−µ)2

I The mean is µ = α+ βxi and the standard deviation is σ.
I Since the yi are independent, the density for (y1, . . . , yn) is the

product of the densities:

f (y1, . . . , yn | α, β) =
n∏

i=1
f (yi | α+ βxi , σ)

=
n∏

i=1

1√
2πσ2

e−
1

2σ2 (yi−α−βxi )2

=
( 1√

2πσ2

)n
e−

1
2σ2
∑n

i=1(yi−α−βxi )2



Maximum Likelihood

I Now we think of our data points as having randomly generated
yi values.

I And we can derive a distribution for these values.
I The distribution depends on the parameters α and β.
I For each (α, β), we get a different value of f (y1, . . . , yn | α, β).
I The larger this value, the more probable the data were.
I It is often reasonable to assume that the data we observed

were as probable as possible.
I If that is true, then we should think that the true α and β

maximize f (y1, . . . , yn | α, β).
I This is called fitting the model by maximum likelihood.



Maximum Likelihood with Normal Errors
I What is the ML estimate of (α, β) with normal errors?
I Want to maximize( 1√

2πσ2

)n
e−

1
2σ2
∑n

i=1(yi−α−βxi )2

I As a function of (α, β),
(

1√
2πσ2

)n
is a constant.

I So just want to maxmimize

e−
1

2σ2
∑n

i=1(yi−α−βxi )2

I This is equivalent to minimizing

1
2σ2

n∑
i=1

(yi − α− βxi)2

I Using α+ βxi = ŷi , this becomes
n∑

i=1
(yi − ŷi)2

I So the ML estimate is the same as the least squares estimate!



Changing Error Distribution
I Now suppose the εi are not normal.
I Why? Sometimes central limit theorem doesn’t hold.
I Points could be too scattered to follow normal distribution

(outliers).
I What if we instead assume a Laplace distribution?
I Here εi

iid∼ exponential(λ).
I Where the Laplace distribution has density

f (y | µ, λ) = 1
2λe−

|y−µ|
λ

I Then the joint distribution of the yi is

f (y1, . . . , yn | α, β) =
( 1
2λ

)n
e−

1
λ

∑n
i=1 |yi−α−βxi |

I Maximizing this is equivalent to minimizing
n∑

i=1
|yi − ŷi |

I So ML estimate is the minimum absolute deviation line!



So, What?
I What have we learned from this?
I We can treat our regression problem as a deterministic problem

of finding the best fitting line.
I Then we need to choose a discrepancy measure d(y , ŷ) to

define out optimization problem.
I Or we can treat regression as a probabilistic problem of finding

the parameters from which our data was randomly generated.
I Then we need to choose an error distribution to define our

estimation problem.
I These two views can give us the same solutions, but involve

different ways of thinking.
I The former requires us to judge the severity of an error. This is

a decision problem that is related to how we use the our
predictions.

I The latter requires us to judge the underlying data-generating
process. This requires us to use substantive knowledge about
the world.



Beyond Linearity

I Linear regression makes a linearity assumption that appears
restrictive

I Many common data display nonlinear association
I How do we capture this nonlinearity?
I Linear regression!
I First: regression with mulitple predictors.
I Recall from earlier, a linear model of the form

yi = α+ β1x (1)
i + · · ·+ βkx (k)

i + εi

where x (j)
i is the value of the jth predictor for the i th data

point.
I Now need to estimate α and teh βj . This can be done as

before.



Beyond Linearity

I Note that the function

α+ β1x (1)
i + · · ·+ βkx (k)

i

is linear in the parameters α and βj .
I This is true regardless of what x (j) are.
I So if we start with a single predictor x (1)

i = xi . . .
I We can define x (j)

i = x j
i for j ≥ 2.

I The resulting function

yi = α+ β1xi + β2x2
i + · · ·+ βkxk

i + εi

is a polynomial in xi , but it is linear in the parameters!
I We can again fit such a model using least squares or maximum

likelihood in exactly the same way as before!



Beyond Linearity

I In general we can take x (j)
i = bj(xi) for any “basis functions”

bi .
I In last slide, we took these to be powers of x .
I Could choose these to be trig functions with different periods.
I Or exponentials with different rates.
I So linear regression supports a wide variety of functional forms.
I However, the functional form must be specified in advance.
I What if we want to learn the functional form from the data?
I We will see one solution to this when we discuss high

dimensional problems.


	Regression to The Mean
	Regression Models

