Regression

Collin Cademartori

1/30/2020

Regression to The Mean

Regression to The Mean

- Regression to the mean is a common statistical artifact
- An example of phenomena explainable by random variation
- Responsible for many mistakes in published research

Do tall parents have shorter children

- Galton (1886) recorded the heights (in inches) of 205 parents and their 928 adult children.
- On average, men 8 percent taller than women so adjusted womens heights to be comparable.
- Galton compared average height of a parent to average height of each child.
- He noticed tall parents tended to have shorted children. Declared children appeared to "regress towards mediocrity".
- At first posited evolutionary mechanism causing tendency to reduced variation around mean.
- Eventually figured out this was just a random effect

Sir Francis Galton (1903)

Figure 1: Galton, first cousin of Charles Darwin

Regression towards mediocrity in heriditary stature (1886)

TABLE I.

NUMBER OF ADULT CHILDREN OF VARIOUS STATURES BORN OF 205 MID-PARENTS OF VARIOUS STATURES. (All Female heights have been multiplied by 1.08).

Heights of the Mid- parents in inches.	Heights of the Adult Children.														Total Number of		Medians.
	Below	62.2	63·2	64 2	65·2	66-2	67·2	68·2	69·2	70.2	71·2	72·2	73.2	Above	Adult Children.	Mid- parents.	
Above 72.5 71.5 69.5 68.5 67.5 66.5 65.5 64.5 Below	 	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	····1 1753942	$ \begin{array}{c} $	 1 4 16 15 2 7 1 1	 3 1 17 25 36 17 11 5 2	$ \begin{array}{c} $	$ \begin{array}{c} 1 \\ 3 \\ 12 \\ 20 \\ 34 \\ 28 \\ 14 \\ 7 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 2 \\ 5 \\ 18 \\ 33 \\ 48 \\ 38 \\ 13 \\ 7 \\ 2 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 10 \\ $	$ \begin{array}{c} 2 \\ 4 \\ $	1 7 9 4 11 4 1 	3 2 2 3 4 3 	: ⁴ ² ³⁵ : : : : :	4 19 43 68 183 219 211 78 66 23 14	5 6 11 22 41 49 33 20 12 5 1	72.2 69.9 69.5 68.9 68.2 67.6 67.2 66.7 65.8
Totals	5	7	32	59	48	117	138	120	167	99	64	41	17	14	928	205	
Medians			66-3	67·8	67·9	67·7	67·9	68·3	68 [.] 5	69·0	69-0	70·0					

NOTE.-In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they stand. The reason why the headings run 62°2, 63°2, &c., instead of 63°5, 63°5, &c., is that the observations are unequally distributed between 62 and 63, 63° and 64, &c., there being a strong bias in favour of integral inches. After careful consideration, I concluded that the headings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the Mid-parents.

A Testing Problem

- Imagine students take a test on calculus
- Then they are instructed to study for three more hours
- Then they take an equivalent test
- We want to use the before and after scores to judge the effectiveness of the extra studying
- The best students might not benefit much, but we really want to target the worst students
- So we can look at the change in the scores of the students with lowest scores on the first test
- Suppose we see their scores all increased. Is this evidence that the studying helped?

Simulating No Effect

- Suppose there was no effect from the additional studying
- We can simulate this
- Suppose 500 initial test scores are distributed like N(70, 8)
- Suppose the post-studying test scores are distributed like initial scores plus some random noise e
- Specifically suppose $\epsilon \sim N(0,5)$
- Zero mean error corresponds to "no effect" assumption

Simulating No Effect

How Did The Lowest Scoring Students Perform?

We can check how the lowest scoring students on the pre-test performed on the post-test

Histogram of score_chg

Difference in Post Test and Pre Test Score

Not Just the Lowest Scores!

Pre Test Score

What Happened? Regresson to The Mean!

- We expect the students who did worst on the pre-test to improve on the post-test
- ... even if the extra studying had no effect on their underlying ability!

Histogram of ability

Why? Let's look at a picture

So, What Is Regression to The Mean?

We can summarize the lesson of regression to the mean in two ways:

- In many cases, when observing data that combine an underlying effect with noise, the more extreme a value we observe, the more probable it is that this value corresponds to a less extreme underlying effect and a more extreme noise value.
- When two variables are imperfectly correlated, more extreme values of one are associated, on average, with less extreme values of the other.
- Not a law of nature; doesn't always occur!
- The distribution of abilities could have a very long tail, for example.

Regression Models

Motivation: Imperfect Correlation

- In the last section we discussed a statistical artifact arising from imperfect correlation.
- We wanted to understand the effect of studying on ability.
- But we could not measure ability directly!
- We can think of the test score as consisting of true ability plus some error.
- In good cases, we can get at the quantity of interest directly (and with negligible measurement error).
- And ideally we get deterministic models like inverse square laws in physics.
- But often this is impossible. Our tools are either too crude, or we can't even get direct access in principle.
- More fundamentally, can't measure enough quantities to hope for deterministic relationships.
- Complex phenomena are highly multi-causal.

Statistical Models

These problems motivate considering models of the form

$$y_i = f\left(x_i^1, \ldots, x_i^k\right) + \epsilon_i$$

- y_i are outcomes of interest.
- x_i^1, \ldots, x_i^k are predictors or covariates.
- f(·) is a specified function that describes the relationship between y and the xs
- *ϵ_i* are error or noise terms representing variation in y
 unexplained by x
- The ys and xs are measured, but the ϵ s are not.
- ▶ Want to infer the relationship *f* from the measured data.

Statistical Models

- The ys and xs are specified by the research question.
- How do we use this data to estimate f? in

$$y_i = f\left(x_i^1, \ldots, x_i^k\right) + \epsilon_i$$

- In principle, f could be anything!
- Without any resitriction on f, this is an infinite-dimensional inference problem!
- In general, the fewer assumption we make about f, the more data we need to infer it accurately.
- (This is a case of a more general phenomenon called the bias-variance tradeoff.)

Linear Regression Models

As a starting point, we can assume that f is linear in its predictors.

$$y_i = \alpha + \beta_1 x_i^1 + \dots + \beta_k x_i^k + \epsilon_i$$

- This is a linear regression model.
- As we will see, the methods used for these models are easily extended to more general f.
- We will start with an even simpler form with one predictor.

$$y_i = \alpha + \beta x_i + \epsilon_i$$

For example, for 1 ≤ i ≤ 50, y_i could be Trump's share of the vote in state i and x_i the average share of the vote the polls predicted Trump would win.

Fitting a Linear Regression Model

- Now estimating f just requires estimating α and β .
- But this is still not obvious! Is there one right way to do this?
- First we can look at the question deterministically.
- We can just ask which line best fits the trend in the data.

The Best Fitting Line

- How should we think about what it means for line to fit the data well?
- For any line y = a + bx, we can use this line to predict y values

$$\hat{y}_i = a + bx_i$$

where the $\hat{\cdot}$ symbol is used to denote a predicted value.

Then the best line might be the one which minimizes the sum of the distances between predictions and the true values:

$$\sum_{i=1}^n |y_i - \hat{y}_i|$$

In the last graph, the blue line minimized this condition.

The Best Fitting Line

- Can we justify using $|y_i \hat{y}_i|$ to measure the quality of a prediction?
- We could consider any discrepancy function d(ŷ_i, y_i) that quantifies the quality of a prediction.
- For this to make sense, we would need $d(\hat{y}_i, y_i) \ge 0$ with equality only if $\hat{y}_i = y_i$.
- Furthermore, suppose that this discrepancy function is smooth (in this case, has two derivatives).
- Then Taylor's theorem tells us we can approximate d(ŷ, y) as a function of ŷ with a Taylor series centered at y (the true value):

$$egin{aligned} d(\hat{y},y) &pprox d(y,y) + d'(y,y)(\hat{y}-y) + 2d''(y,y)(\hat{y}-y)^2 \ &= 2d''(y,y)(\hat{y}-y)^2 \end{aligned}$$

Since the above guarantees that d(y, y) = 0 and d'(y, y) = 0 since y minimizes d(⋅, y).

The Best Fitting Line

- ▶ Now again since y is a minimum, we must have d''(y, y) > 0
- So minimizing $2d''(y,y)(\hat{y}-y)^2$ is equivalent to minimizing $(\hat{y}-y)^2$.
- ▶ So for a general smooth disprepancy function d, we can approximately minimize the sum $\sum_{i=1}^{n} d(\hat{y}_i, y_i)$ by minimizing

$$\sum_{i=1}^n (\hat{y}_i - y_i)^2$$

In the above graph, the red line minimizes this condition.
What about the green line? It's the true line from which the data were generated!

Introducing Probability

- ► The previous discussion was entirely deterministic.
- Phrased our problem as an optimization problem.
- What if we think of the points as being randomly scattered around the true line?
- This corresponds to thinking of errors e_i as having some probability distribution.
- But we still have a choice: what distribution do we think \(\earepsilon_i\) has?

Error Distributions

- Often reasonable to think of errors as arising from a series of independent chance effects.
- For instance, a product moving down an assembly line.
- Each machine has some level of imprecision in its operation.
- Each question on a test is an imperfect measure of knowledge of a concept.
- A sum of many independent small chance effects have an approximately normal distirbution.
- By the central limit theorem!
- So we often take $\epsilon_i \stackrel{iid}{\sim} \operatorname{normal}(0, \sigma)$

From Distributions to Fitting Procedures

▶ If ϵ_i are normal, then we have $y_i \stackrel{iid}{\sim} \operatorname{normal}(\alpha + \beta x_i, \sigma)$

Recall that the normal distribution has density

$$f(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

• The mean is $\mu = \alpha + \beta x_i$ and the standard deviation is σ .

Since the y_i are independent, the density for (y₁,..., y_n) is the product of the densities:

$$f(y_1, \dots, y_n \mid \alpha, \beta) = \prod_{i=1}^n f(y_i \mid \alpha + \beta x_i, \sigma)$$

=
$$\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - \alpha - \beta x_i)^2}$$

=
$$\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}$$

Maximum Likelihood

- Now we think of our data points as having randomly generated y_i values.
- And we can derive a distribution for these values.
- The distribution depends on the parameters α and β .
- For each (α, β) , we get a different value of $f(y_1, \ldots, y_n \mid \alpha, \beta)$.
- The larger this value, the more probable the data were.
- It is often reasonable to assume that the data we observed were as probable as possible.
- If that is true, then we should think that the true α and β maximize f(y₁,..., y_n | α, β).
- This is called fitting the model by maximum likelihood.

Maximum Likelihood with Normal Errors

- What is the ML estimate of (α, β) with normal errors?
- Want to maximize

$$\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}$$

• As a function of (α, β) , $\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n$ is a constant.

So just want to maxmimize

$$e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\alpha-\beta x_i)^2}$$

This is equivalent to minimizing

$$\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\alpha-\beta x_i)^2$$

• Using $\alpha + \beta x_i = \hat{y}_i$, this becomes

$$\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$$

So the ML estimate is the same as the least squares estimate!

Changing Error Distribution

- Now suppose the ϵ_i are not normal.
- ▶ Why? Sometimes central limit theorem doesn't hold.
- Points could be too scattered to follow normal distribution (outliers).
- What if we instead assume a Laplace distribution?
- Here $\epsilon_i \stackrel{iid}{\sim} \operatorname{exponential}(\lambda)$.
- Where the Laplace distribution has density

$$f(y \mid \mu, \lambda) = rac{1}{2\lambda} e^{-rac{|y-\mu|}{\lambda}}$$

• Then the joint distribution of the y_i is

$$f(y_1,\ldots,y_n \mid \alpha,\beta) = \left(\frac{1}{2\lambda}\right)^n e^{-\frac{1}{\lambda}\sum_{i=1}^n |y_i - \alpha - \beta x_i|}$$

Maximizing this is equivalent to minimizing

$$\sum_{i=1}^n |y_i - \hat{y}_i|$$

So ML estimate is the minimum absolute deviation line!

So, What?

- What have we learned from this?
- We can treat our regression problem as a deterministic problem of finding the best fitting line.
- Then we need to choose a discrepancy measure d(y, ŷ) to define out optimization problem.
- Or we can treat regression as a probabilistic problem of finding the parameters from which our data was randomly generated.
- Then we need to choose an error distribution to define our estimation problem.
- These two views can give us the same solutions, but involve different ways of thinking.
- The former requires us to judge the severity of an error. This is a decision problem that is related to how we use the our predictions.
- The latter requires us to judge the underlying data-generating process. This requires us to use substantive knowledge about the world.

Beyond Linearity

- Linear regression makes a linearity assumption that appears restrictive
- Many common data display nonlinear association
- How do we capture this nonlinearity?
- Linear regression!
- First: regression with mulitple predictors.
- Recall from earlier, a linear model of the form

$$y_i = \alpha + \beta_1 x_i^{(1)} + \dots + \beta_k x_i^{(k)} + \epsilon_i$$

where $x_i^{(j)}$ is the value of the j^{th} predictor for the i^{th} data point.

Now need to estimate α and teh β_j. This can be done as before.

Beyond Linearity

Note that the function

$$\alpha + \beta_1 x_i^{(1)} + \dots + \beta_k x_i^{(k)}$$

is linear in the parameters α and β_j .

- This is true regardless of what $x^{(j)}$ are.
- So if we start with a single predictor $x_i^{(1)} = x_i \dots$
- We can define $x_i^{(j)} = x_i^j$ for $j \ge 2$.
- The resulting function

$$y_i = \alpha + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k + \epsilon_i$$

is a polynomial in x_i , but it is linear in the parameters!

We can again fit such a model using least squares or maximum likelihood in exactly the same way as before!

Beyond Linearity

- In general we can take x_i^(j) = b_j(x_i) for any "basis functions" b_i.
- In last slide, we took these to be powers of x.
- Could choose these to be trig functions with different periods.
- Or exponentials with different rates.
- So linear regression supports a wide variety of functional forms.
- ► However, the functional form must be specified in advance.
- What if we want to learn the functional form from the data?
- We will see one solution to this when we discuss high dimensional problems.