Regression

Collin Cademartori

$$
1 / 30 / 2020
$$

Regression to The Mean

Regression to The Mean

- Regression to the mean is a common statistical artifact
- An example of phenomena explainable by random variation
- Responsible for many mistakes in published research

Do tall parents have shorter children

- Galton (1886) recorded the heights (in inches) of 205 parents and their 928 adult children.
- On average, men 8 percent taller than women so adjusted womens heights to be comparable.
- Galton compared average height of a parent to average height of each child.
- He noticed tall parents tended to have shorted children. Declared children appeared to "regress towards mediocrity".
- At first posited evolutionary mechanism causing tendency to reduced variation around mean.
- Eventually figured out this was just a random effect

Sir Francis Galton (1903)

Figure 1: Galton, first cousin of Charles Darwin

Regression towards mediocrity in heriditary stature (1886)

TABLE I.
Number of Adult Children of various statures born of 205 Mid-parents of various statures. (All Female heights have been multiplied by 1.08).

Heights of the Midparents in inches.	Heights of the Adult Children.														Total Number of		Medians.
	Below	62:2	$63 \cdot 2$	642	$65 \cdot 2$	66.2	67-2	$68 \cdot 2$	69.2	70.2	71.2	72'2	$73 \cdot 2$	Above	Adult Children.	Midparents.	
Above	*	\cdots	\because	\cdots	,	1	3	\cdot	4	5	\cdots						
72.5	.	..	-	.	\cdots	\cdots	\cdots	1	2	1	2	7	2	4	19	6	$72 \cdot 2$
71.5	.	.	\cdots	\cdots	1	3	4	3	5	10	4	9	2	2	43	11	69.9
70.5	1	.	1	\cdots	1	1	3	12	18	14	7	4	3	3	68	22	69.5
69.5	.	\cdots	1	16	4	17	27	20	33	25	20	11	4	5	183	41	$68 \cdot 9$
$68 \cdot 5$	1	\cdots	7	11	16	25	31	34	48	21	18	4	3	*	219	49	$68 \cdot 2$
$67 \cdot 5$	\cdots	3	5	14	15	36	38	28	38	19	11	4	\cdots	-	211	33	$67 \cdot 6$
66.5	\cdots	3	3	5	2	17	17	14	13	4	,	\cdots	..	.	78	20	$67 \cdot 2$
$65 \cdot 5$	1	\cdots	9	5	7	11	11	7	7	5	2	1	..	\cdots	66	12	667
64.5	1	1	4	4	1	5	5	\cdots	2	23	5	$65 \cdot 8$
Below .	1	..	2	4	1	2	2	1	1	14	1	.
Totals	5	7	32	59	48	117	138	120	167	99	64	41	17	14	928	205	\cdots
Medians ..	\cdots	\cdots	66.3	67.8	67.9	67.7	$67 \cdot 9$	68.3	68.5	69.0	$69^{\circ} 0$	70.0	\cdots	\cdots	\cdots	*	\cdots

[^0]
A Testing Problem

- Imagine students take a test on calculus
- Then they are instructed to study for three more hours
- Then they take an equivalent test
- We want to use the before and after scores to judge the effectiveness of the extra studying
- The best students might not benefit much, but we really want to target the worst students
- So we can look at the change in the scores of the students with lowest scores on the first test
- Suppose we see their scores all increased. Is this evidence that the studying helped?

Simulating No Effect

- Suppose there was no effect from the additional studying
- We can simulate this
- Suppose 500 initial test scores are distributed like $N(70,8)$
- Suppose the post-studying test scores are distributed like initial scores plus some random noise ϵ
- Specifically suppose $\epsilon \sim N(0,5)$
- Zero mean error corresponds to "no effect" assumption

Simulating No Effect

How Did The Lowest Scoring Students Perform?

- We can check how the lowest scoring students on the pre-test performed on the post-test

Histogram of score_chg

Not Just the Lowest Scores!

What Happened? Regresson to The Mean!

- We expect the students who did worst on the pre-test to improve on the post-test
- ... even if the extra studying had no effect on their underlying ability!
- Why? Let's look at a picture

Histogram of ability

So, What Is Regression to The Mean?

We can summarize the lesson of regression to the mean in two ways:

- In many cases, when observing data that combine an underlying effect with noise, the more extreme a value we observe, the more probable it is that this value corresponds to a less extreme underlying effect and a more extreme noise value.
- When two variables are imperfectly correlated, more extreme values of one are associated, on average, with less extreme values of the other.
- Not a law of nature; doesn't always occur!
- The distribution of abilities could have a very long tail, for example.

Regression Models

Motivation: Imperfect Correlation

- In the last section we discussed a statistical artifact arising from imperfect correlation.
- We wanted to understand the effect of studying on ability.
- But we could not measure ability directly!
- We can think of the test score as consisting of true ability plus some error.
- In good cases, we can get at the quantity of interest directly (and with negligible measurement error).
- And ideally we get deterministic models like inverse square laws in physics.
- But often this is impossible. Our tools are either too crude, or we can't even get direct access in principle.
- More fundamentally, can't measure enough quantities to hope for deterministic relationships.
- Complex phenomena are highly multi-causal.

Statistical Models

- These problems motivate considering models of the form

$$
y_{i}=f\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)+\epsilon_{i}
$$

- y_{i} are outcomes of interest.
- $x_{i}^{1}, \ldots, x_{i}^{k}$ are predictors or covariates.
- $f(\cdot)$ is a specified function that describes the relationship between y and the $x s$
- ϵ_{i} are error or noise terms representing variation in y unexplained by x
- The $y s$ and $x s$ are measured, but the ϵ s are not.
- Want to infer the relationship f from the measured data.

Statistical Models

- The ys and xs are specified by the research question.
- How do we use this data to estimate f ? in

$$
y_{i}=f\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)+\epsilon_{i}
$$

- In principle, f could be anything!
- Without any resitriction on f, this is an infinite-dimensional inference problem!
- In general, the fewer assumption we make about f, the more data we need to infer it accurately.
- (This is a case of a more general phenomenon called the bias-variance tradeoff.)

Linear Regression Models

- As a starting point, we can assume that f is linear in its predictors.

$$
y_{i}=\alpha+\beta_{1} x_{i}^{1}+\cdots+\beta_{k} x_{i}^{k}+\epsilon_{i}
$$

- This is a linear regression model.
- As we will see, the methods used for these models are easily extended to more general f.
- We will start with an even simpler form with one predictor.

$$
y_{i}=\alpha+\beta x_{i}+\epsilon_{i}
$$

- For example, for $1 \leq i \leq 50, y_{i}$ could be Trump's share of the vote in state i and x_{i} the average share of the vote the polls predicted Trump would win.

Fitting a Linear Regression Model

- Now estimating f just requires estimating α and β.
- But this is still not obvious! Is there one right way to do this?
- First we can look at the question deterministically.
- We can just ask which line best fits the trend in the data.

The Best Fitting Line

- How should we think about what it means for line to fit the data well?
- For any line $y=a+b x$, we can use this line to predict y values

$$
\hat{y}_{i}=a+b x_{i}
$$

where the . symbol is used to denote a predicted value.

- Then the best line might be the one which minimizes the sum of the distances between predictions and the true values:

$$
\sum_{i=1}^{n}\left|y_{i}-\hat{y}_{i}\right|
$$

- In the last graph, the blue line minimized this condition.

The Best Fitting Line

- Can we justify using $\left|y_{i}-\hat{y}_{i}\right|$ to measure the quality of a prediction?
- We could consider any discrepancy function $d\left(\hat{y}_{i}, y_{i}\right)$ that quantifies the quality of a prediction.
- For this to make sense, we would need $d\left(\hat{y}_{i}, y_{i}\right) \geq 0$ with equality only if $\hat{y}_{i}=y_{i}$.
- Furthermore, suppose that this discrepancy function is smooth (in this case, has two derivatives).
- Then Taylor's theorem tells us we can approximate $d(\hat{y}, y)$ as a function of \hat{y} with a Taylor series centered at y (the true value):

$$
\begin{aligned}
d(\hat{y}, y) & \approx d(y, y)+d^{\prime}(y, y)(\hat{y}-y)+2 d^{\prime \prime}(y, y)(\hat{y}-y)^{2} \\
& =2 d^{\prime \prime}(y, y)(\hat{y}-y)^{2}
\end{aligned}
$$

- Since the above guarantees that $d(y, y)=0$ and $d^{\prime}(y, y)=0$ since y minimizes $d(\cdot, y)$.

The Best Fitting Line

- Now again since y is a minimum, we must have $d^{\prime \prime}(y, y)>0$
- So minimizing $2 d^{\prime \prime}(y, y)(\hat{y}-y)^{2}$ is equivalent to minimizing $(\hat{y}-y)^{2}$.
- So for a general smooth disprepancy function d, we can approximately minimize the sum $\sum_{i=1}^{n} d\left(\hat{y}_{i}, y_{i}\right)$ by minimizing

$$
\sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

- In the above graph, the red line minimizes this condition.
- What about the green line? It's the true line from which the data were generated!

Introducing Probability

- The previous discussion was entirely deterministic.
- Phrased our problem as an optimization problem.
- What if we think of the points as being randomly scattered around the true line?
- This corresponds to thinking of errors ϵ_{i} as having some probability distribution.
- But we still have a choice: what distribution do we think ϵ_{i} has?

Error Distributions

- Often reasonable to think of errors as arising from a series of independent chance effects.
- For instance, a product moving down an assembly line.
- Each machine has some level of imprecision in its operation.
- Each question on a test is an imperfect measure of knowledge of a concept.
- A sum of many independent small chance effects have an approximately normal distirbution.
- By the central limit theorem!
- So we often take $\epsilon_{i} \stackrel{i i d}{\sim} \operatorname{normal}(0, \sigma)$

From Distributions to Fitting Procedures

- If ϵ_{i} are normal, then we have $y_{i} \stackrel{i i d}{\sim} \operatorname{normal}\left(\alpha+\beta x_{i}, \sigma\right)$
- Recall that the normal distribution has density

$$
f(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- The mean is $\mu=\alpha+\beta x_{i}$ and the standard deviation is σ.
- Since the y_{i} are independent, the density for $\left(y_{1}, \ldots, y_{n}\right)$ is the product of the densities:

$$
\begin{aligned}
f\left(y_{1}, \ldots, y_{n} \mid \alpha, \beta\right) & =\prod_{i=1}^{n} f\left(y_{i} \mid \alpha+\beta x_{i}, \sigma\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}} \\
& =\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}}
\end{aligned}
$$

Maximum Likelihood

- Now we think of our data points as having randomly generated y_{i} values.
- And we can derive a distribution for these values.
- The distribution depends on the parameters α and β.
- For each (α, β), we get a different value of $f\left(y_{1}, \ldots, y_{n} \mid \alpha, \beta\right)$.
- The larger this value, the more probable the data were.
- It is often reasonable to assume that the data we observed were as probable as possible.
- If that is true, then we should think that the true α and β maximize $f\left(y_{1}, \ldots, y_{n} \mid \alpha, \beta\right)$.
- This is called fitting the model by maximum likelihood.

Maximum Likelihood with Normal Errors

- What is the ML estimate of (α, β) with normal errors?
- Want to maximize

$$
\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}}
$$

- As a function of $(\alpha, \beta),\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n}$ is a constant.
- So just want to maxmimize

$$
e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}}
$$

- This is equivalent to minimizing

$$
\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}
$$

- Using $\alpha+\beta x_{i}=\hat{y}_{i}$, this becomes

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- So the ML estimate is the same as the least squares estimate!

Changing Error Distribution

- Now suppose the ϵ_{i} are not normal.
- Why? Sometimes central limit theorem doesn't hold.
- Points could be too scattered to follow normal distribution (outliers).
- What if we instead assume a Laplace distribution?
- Here $\epsilon_{i} \stackrel{i i d}{\sim}$ exponential (λ).
- Where the Laplace distribution has density

$$
f(y \mid \mu, \lambda)=\frac{1}{2 \lambda} e^{-\frac{|y-\mu|}{\lambda}}
$$

- Then the joint distribution of the y_{i} is

$$
f\left(y_{1}, \ldots, y_{n} \mid \alpha, \beta\right)=\left(\frac{1}{2 \lambda}\right)^{n} e^{-\frac{1}{\lambda} \sum_{i=1}^{n}\left|y_{i}-\alpha-\beta x_{i}\right|}
$$

- Maximizing this is equivalent to minimizing

$$
\sum_{i=1}^{n}\left|y_{i}-\hat{y}_{i}\right|
$$

- So ML estimate is the minimum absolute deviation line!

So, What?

- What have we learned from this?
- We can treat our regression problem as a deterministic problem of finding the best fitting line.
- Then we need to choose a discrepancy measure $d(y, \hat{y})$ to define out optimization problem.
- Or we can treat regression as a probabilistic problem of finding the parameters from which our data was randomly generated.
- Then we need to choose an error distribution to define our estimation problem.
- These two views can give us the same solutions, but involve different ways of thinking.
- The former requires us to judge the severity of an error. This is a decision problem that is related to how we use the our predictions.
- The latter requires us to judge the underlying data-generating process. This requires us to use substantive knowledge about the world.

Beyond Linearity

- Linear regression makes a linearity assumption that appears restrictive
- Many common data display nonlinear association
- How do we capture this nonlinearity?
- Linear regression!
- First: regression with mulitple predictors.
- Recall from earlier, a linear model of the form

$$
y_{i}=\alpha+\beta_{1} x_{i}^{(1)}+\cdots+\beta_{k} x_{i}^{(k)}+\epsilon_{i}
$$

where $x_{i}^{(j)}$ is the value of the $j^{\text {th }}$ predictor for the $i^{\text {th }}$ data point.

- Now need to estimate α and teh β_{j}. This can be done as before.

Beyond Linearity

- Note that the function

$$
\alpha+\beta_{1} x_{i}^{(1)}+\cdots+\beta_{k} x_{i}^{(k)}
$$

is linear in the parameters α and β_{j}.

- This is true regardless of what $x^{(j)}$ are.
- So if we start with a single predictor $x_{i}^{(1)}=x_{i} \ldots$
- We can define $x_{i}^{(j)}=x_{i}^{j}$ for $j \geq 2$.
- The resulting function

$$
y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\cdots+\beta_{k} x_{i}^{k}+\epsilon_{i}
$$

is a polynomial in x_{i}, but it is linear in the parameters!

- We can again fit such a model using least squares or maximum likelihood in exactly the same way as before!

Beyond Linearity

- In general we can take $x_{i}^{(j)}=b_{j}\left(x_{i}\right)$ for any "basis functions" b_{i}.
- In last slide, we took these to be powers of x.
- Could choose these to be trig functions with different periods.
- Or exponentials with different rates.
- So linear regression supports a wide variety of functional forms.
- However, the functional form must be specified in advance.
- What if we want to learn the functional form from the data?
- We will see one solution to this when we discuss high dimensional problems.

[^0]: Notr.-In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they stand. The reason why the headings run $62 \cdot 2,63 \cdot 2$, \&c., instead of $62.5,63 \cdot 5$, \&c., is that the observations are unequally distributed between 62 and 63,63 and 64, \&c., there being a strong bias in favour of integral inches. After careful consideration, I coneluded that the headings, as adopted, best satisfled the conditions. This inequality was not apparent in the case of the Mid-parents.

