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Regression to The Mean



Regression to The Mean

P> Regression to the mean is a common statistical artifact
» An example of phenomena explainable by random variation
» Responsible for many mistakes in published research



Do tall parents have shorter children

> Galton (1886) recorded the heights (in inches) of 205 parents
and their 928 adult children.

» On average, men 8 percent taller than women so adjusted
womens heights to be comparable.

> Galton compared average height of a parent to average height
of each child.

» He noticed tall parents tended to have shorted children.
Declared children appeared to “regress towards mediocrity”.

> At first posited evolutionary mechanism causing tendency to
reduced variation around mean.

» Eventually figured out this was just a random effect



Sir Francis Galton (1903

Figure 1: Galton, first cousin of Charles Darwin



Regression towards mediocrity in heriditary stature (1886)

TABLE I
Numser or Apunr CHILDREN OF VARIOUS STATURES BOEN OF 205 MID.PARENTS OF VARIOUS STATURES.
(All Female heights have been multiplied by 1-08).

Heights of Heights of the Adult Children. Total Number of
the Mid- .
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Nore.—In caloulating the Medians, the entries have been taken 8s referring to the middle of the squares in which they
stand. The reason why the hendx? run 62'3, 632, &e., instead of 62'5, 68'5, &c., is that the observations are unequally
distributed between 62 and 63, 63 and 64, &c., there being "‘m"'ﬁ Lins in favour of integral inches. After careful consideration,
I concluded that the headings, as adopted, best satisfied the it This inequality was not in the case of the
Mid-parents.




A Testing Problem
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Imagine students take a test on calculus

Then they are instructed to study for three more hours

Then they take an equivalent test

We want to use the before and after scores to judge the
effectiveness of the extra studying

The best students might not benefit much, but we really want
to target the worst students

So we can look at the change in the scores of the students with
lowest scores on the first test

Suppose we see their scores all increased. Is this evidence that
the studying helped?



Simulating No Effect

vvyyvyy

v

Suppose there was no effect from the additional studying

We can simulate this

Suppose 500 initial test scores are distributed like N(70,8)
Suppose the post-studying test scores are distributed like initial
scores plus some random noise ¢

Specifically suppose € ~ N(0, 5)

Zero mean error corresponds to “no effect” assumption



Simulating No Effect
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How Did The Lowest Scoring Students Perform?
> We can check how the lowest scoring students on the pre-test
performed on the post-test

Histogram of score_chg
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Not Just the Lowest Scores!
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What Happened? Regresson to The Mean!

>

> ...

We expect the students who did worst on the pre-test to
improve on the post-test

even if the extra studying had no effect on their underlying
ability!

Why? Let's look at a picture

Histogram of ability
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So, What Is Regression to The Mean?

We can summarize the lesson of regression to the mean in two ways:

» In many cases, when observing data that combine an
underlying effect with noise, the more extreme a value we
observe, the more probable it is that this value corresponds to a
less extreme underlying effect and a more extreme noise value.

> When two variables are imperfectly correlated, more extreme
values of one are associated, on average, with less extreme
values of the other.

> Not a law of nature; doesn't always occur!

» The distribution of abilities could have a very long tail, for
example.



Regression Models



Motivation: Imperfect Correlation

>

>
>
>

In the last section we discussed a statistical artifact arising
from imperfect correlation.

We wanted to understand the effect of studying on ability.
But we could not measure ability directly!

We can think of the test score as consisting of true ability plus
some error.

In good cases, we can get at the quantity of interest directly
(and with negligible measurement error).

And ideally we get deterministic models like inverse square laws
in physics.

But often this is impossible. Our tools are either too crude, or
we can't even get direct access in principle.

More fundamentally, can't measure enough quantities to hope
for deterministic relationships.

Complex phenomena are highly multi-causal.



Statistical Models

v

These problems motivate considering models of the form
yi = f(X,-l,...,X,-k> + €

y; are outcomes of interest.

x},...,xK are predictors or covariates.

f(-) is a specified function that describes the relationship
between y and the xs

€;j are error or noise terms representing variation in y
unexplained by x

The ys and xs are measured, but the es are not.

Want to infer the relationship f from the measured data.



Statistical Models

» The ys and xs are specified by the research question.
» How do we use this data to estimate 7 in

y;:f(x,l,...,xik)+e;

» In principle, f could be anything!

» Without any resitriction on f, this is an infinite-dimensional
inference problem!

» In general, the fewer assumption we make about f, the more
data we need to infer it accurately.

» (This is a case of a more general phenomenon called the
bias-variance tradeoff.)



Linear Regression Models

> As a starting point, we can assume that f is linear in its
predictors.

Vi=a+ fixt 4+ -+ Bxk 4 €

» This is a linear regression model.

> As we will see, the methods used for these models are easily
extended to more general f.

» We will start with an even simpler form with one predictor.

yi=a+PBxi+e€

> For example, for 1 < j < 50, y; could be Trump’s share of the
vote in state / and x; the average share of the vote the polls
predicted Trump would win.



Fitting a Linear Regression Model
» Now estimating f just requires estimating « and 5.
» But this is still not obvious! Is there one right way to do this?
P First we can look at the question deterministically.
> We can just ask which line best fits the trend in the data.




The Best Fitting Line

» How should we think about what it means for line to fit the
data well?
» For any line y = a+ bx, we can use this line to predict y values

)7/:3+bX,'

where the * symbol is used to denote a predicted value.
» Then the best line might be the one which minimizes the sum
of the distances between predictions and the true values:

Z lyi — ¥il

» In the last graph, the blue line minimized this condition.



The Best Fitting Line

>

>

>

Can we justify using |y; — ;| to measure the quality of a
prediction?

We could consider any discrepancy function d(¥;, y;) that
quantifies the quality of a prediction.

For this to make sense, we would need d(¥;, y;) > 0 with
equality only if §; = y;.

Furthermore, suppose that this discrepancy function is smooth
(in this case, has two derivatives).

Then Taylor's theorem tells us we can approximate d(¥,y) as a
function of § with a Taylor series centered at y (the true value):

d(7,y) ~d(y,y)+d'(y.y)(7 —y) +2d"(y,y)(§ — y)?
=2d"(y,y)(§ — y)?

Since the above guarantees that d(y,y) =0 and d'(y,y) =0
since y minimizes d(-,y).



The Best Fitting Line

» Now again since y is a minimum, we must have d”(y,y) > 0

» So minimizing 2d”(y, y)(¥ — y)? is equivalent to minimizing
(7 —y)*

» So for a general smooth disprepancy function d, we can
approximately minimize the sum > ; d(¥;, y;) by minimizing

n

ST —w)

i=1

» In the above graph, the red line minimizes this condition.
» What about the green line? It's the true line from which the
data were generated!



Introducing Probability

» The previous discussion was entirely deterministic.

Phrased our problem as an optimization problem.

» What if we think of the points as being randomly scattered
around the true line?

» This corresponds to thinking of errors ¢; as having some
probability distribution.

» But we still have a choice: what distribution do we think ¢;
has?

v



Error Distributions

v

Often reasonable to think of errors as arising from a series of
independent chance effects.

For instance, a product moving down an assembly line.

Each machine has some level of imprecision in its operation.
Each question on a test is an imperfect measure of knowledge
of a concept.

A sum of many independent small chance effects have an
approximately normal distirbution.

By the central limit theorem!

So we often take ¢; - normal(0, o)



From Distributions to Fitting Procedures

» If ¢; are normal, then we have y; iid normal(a + fx;, o)
» Recall that the normal distribution has density

o~ 202 (=)

f(x|p,o)=
(xlm0) = o=
» The mean is © = a4+ Bx; and the standard deviation is o.
» Since the y; are independent, the density for (y1,...,yn) is the
product of the densities:

n

F(y1es¥n | @, B) = Hf(yi | a+ Bxi,0)
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Maximum Likelihood
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Now we think of our data points as having randomly generated
y; values.

And we can derive a distribution for these values.

The distribution depends on the parameters o and (.

For each («, ), we get a different value of f(y1,...,¥n | @, ).
The larger this value, the more probable the data were.

It is often reasonable to assume that the data we observed
were as probable as possible.

If that is true, then we should think that the true o and 3
maximize f(y1,...,¥n | @, ).

This is called fitting the model by maximum likelihood.



Maximum Likelihood with Normal Errors

» What is the ML estimate of («, 3) with normal errors?
> Want to maximize

( L ) ! e—ﬁ or (vi—a—Bxi)?
V27102

n
> . 1 ) .
As 'a function of (a,ﬁ)., (TW is a constant.
» So just want to maxmimize

e*ﬁ > (vi—a—pBx)?

» This is equivalent to minimizing
1 n
2
=5 > (yi —a—fBx)
20° i

» Using a4+ Bx; = ¥;, this becomes

n

> i —9)?

i=1

» So the ML estimate is the same as the least squares estimate!



Changing Error Distribution

>
>
>

Now suppose the ¢; are not normal.

Why? Sometimes central limit theorem doesn’t hold.
Points could be too scattered to follow normal distribution
(outliers).

What if we instead assume a Laplace distribution?

Here ¢ %4 exponential(\).

Where the Laplace distribution has density

1 y—u
f(ylu,A)Zﬁe X

Then the joint distribution of the y; is

1 ! -1 i i—a—Bx;
f(yl7;)/n|a,ﬂ):(2/\) e AZ,‘:1|yI /BI‘

Maximizing this is equivalent to minimizing

Z lyi — Jil

So ML estimate is the minimum absolute deviation line!



So, What?

>
>

What have we learned from this?

We can treat our regression problem as a deterministic problem
of finding the best fitting line.

Then we need to choose a discrepancy measure d(y, y) to
define out optimization problem.

Or we can treat regression as a probabilistic problem of finding
the parameters from which our data was randomly generated.
Then we need to choose an error distribution to define our
estimation problem.

These two views can give us the same solutions, but involve
different ways of thinking.

The former requires us to judge the severity of an error. This is
a decision problem that is related to how we use the our
predictions.

The latter requires us to judge the underlying data-generating
process. This requires us to use substantive knowledge about
the world.



Beyond Linearity
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Linear regression makes a linearity assumption that appears
restrictive

Many common data display nonlinear association

How do we capture this nonlinearity?

Linear regression!

First: regression with mulitple predictors.

Recall from earlier, a linear model of the form

where xY) is the value of the jt predictor for the i*" data

1
point.
Now need to estimate « and teh 3;. This can be done as

before.



Beyond Linearity

>
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Note that the function
a+ 51X,-(1) +--+ ka,(k)

is linear in the parameters o and f3;.
This is true regardless of what xU) are.

So if we start with a single predictor x(l) = Xj...

We can define x(j x! for j > 2.
The resulting functlon

Yi=a+Bixi+ o7+ + Bt + e

is a polynomial in x;, but it is linear in the parameters!
We can again fit such a model using least squares or maximum
likelihood in exactly the same way as before!



Beyond Linearity
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In general we can take x,-(J) = bj(x;) for any "basis functions”
b;.

In last slide, we took these to be powers of x.

Could choose these to be trig functions with different periods.
Or exponentials with different rates.

So linear regression supports a wide variety of functional forms.
However, the functional form must be specified in advance.
What if we want to learn the functional form from the data?
We will see one solution to this when we discuss high
dimensional problems.
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