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Plan for This Lecture

Review topics from high school math

Overview of probability concepts

Arithmetic of probability
Bayes rule
Some common distributions

Will try to make these topics interesting

Please stop me if I go over anything too quickly
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Zoom Lecture Logistics

Please turn on your cameras if you can

I will periodically ask the class questions

Please use the ‘raise hand’ function in Zoom to answer

The ‘raise hand’ button can be found at the bottom of the
participants list

If you have a question, please just interrupt me

I’ll try to watch the chat, but speaking is better if you can
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Pre-Calculus in Three Slides

We will encounter many the common functions in this class

Polynomials: p(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0
The highest power in the polynomial is its degree
If p(x0) = 0, then x0 is called a root or zero of p
The multlicity of a root x0 is the largest j so that

p(x) = (x− x0)jp1(x)

for some polynomial p1
Fundamental theorem of algebra:

A degree k polynomial has k (possibly complex) roots
(counted with multiplicity)

A polynomial is determined up to a constant by its roots
Statistically, polynomials are good at modeling functions:

That don’t vary too rapidy
That don’t take values across many orders of magnitude
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Pre-Calculus in Three Slides

Trigonometric Functions: sin(x) and cos(x)

These functions are periodic waves
We can control the properties of this wave

f(x) = c+A sin(ωx+ ψ)

Changing c shifts the function up and down
Changing ψ shift the function left and right
A controls the amplitude of the wave
ω controls the frequency of the wave

Sums of these represent more complex periodic functions
Arbitrary functions can be well approximated by such sums

This is a result from the field of Fourier analysis

Statistically, trig functions can model periodic phenomena

Ex: time series with seasonal trends
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Pre-Calculus in Three Slides

Exponential Functions: ax

Exponential functions grow faster than any polynomial
If a = e, we refer to this as ‘the’ exponential function exp(x)
exp(x) has series representation

∑∞
n=0

xn

n!
Exponential functions can model compound growth

Ex: the spread of a virus after initial introduction

Logarithmic Functions: loga(x)

loga(x) is the number b such that ab = x (defined for x > 0)
In other words, loga(x) is inverse of ax

When a = e, this is the natural logarithm log(x)
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Calculus Review

We will make frequent use of basic calculus in statistics

We will review these concepts using convergence rates

Suppose that f(x) and g(x) are two functions and that

lim
x→0

f(x)

g(x)
= 0

Then we write f(x) = o(g(x)) and say f is “little o” of g

If f(x)→ 0 and g(x)→ c 6= 0 as x→ 0, then f = o(g)

If f(x), g(x)→ 0, we may or may not get f = o(g)

In this case, if f = o(g), then f goes to zero faster than g

This is a statement about the rate at which f goes to zero

We can restate calculus results in terms of these rates
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Derivative as The Local Linear Part of f(x)

We can characterize the derivative of f at a as follows

f ′(a) is the unique value such that

lim
h→0

|f(a+ h)− (f(a) + f ′(a)h)|
h

= 0

The function dfa(h) = f(a) + f ′(a)h is linear

dfa approximates f at a and is called the differential

The derivative is just the slope of the differential

The key point: |f(a+ h)− dfa(h)| = o(h)

The speed at which h goes to zero is linear

So the difference between f and its differential goes to zero
faster than linearly

Thus we can think of dfa as the linear part of f(x) at a
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From Derivatives to Taylor’s Theorem

We can restate the result of the last slide as follows

f(a+ h) = f(a) + f ′(a)h+ o(h)

Thus the differential relates the derivative to the best
linear approximation to f at a point

Taylor’s theorem generalizes this relationship

If f is k-times differentiable, then

f(a+ h) =

k∑
j=0

f (j)(a)hj + o
(
hk+1

)
Again, the most important part is the o(hk+1) term

Infinitely many polynomials are equal to f at a

Only the Taylor polynomial has error of higher order
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Multi-Dimensional Optimization

Suppose we want to maximize or minimize f(x)

If x ∈ R, we can find the points f ′(x) = 0

Second derivative f ′′(x) identifies maxs, mins, saddle points

If x ∈ Rd, we work with the gradient

∇f(x) =

(
∂

∂x1
f(x), . . . ,

∂

∂xd
f(x)

)
Critical points ∇f(x) = 0

Need to check Hessian Hf (x) to identify extrema
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Constrained Optimization

Sometimes we want to solve a problem of the form

max
x

f(x) such that g(x) = 0

The equation g(x) = 0 defines the subset we search over

For example, if

g(x) =

d∑
i=1

x2i − r2

then g(x) = 0 is the sphere of radius r

Looking at ∇f(x) = 0 no longer works

Maxima of f on g(x) = 0 may not be maxima over all space

If f(x, y) = x2 + y2, then every (x, y) is a max on any circle

But no (x, y) is a local or global max of f(x, y) overall
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Lagrange Multipliers

Lagrange multipliers allow us to solve this problem!

To understand Lagrange multipliers, we need some
geometry

Suppose that on g(x) = 0, f has a global maximizer x0

Suppose furthermore that f(x0) = a

Then the curves f(x) = a and g(x) = 0 are tangent

The curves must touch (or f(x0) could not equal a)
What if f(x) = a passes through g(x) = 0?
Then f(x) = a touches g(x) = 0 at ≥ 2 points
But we assumed x0 was a global maximizer...
So f(x) = a must just touch g(x) = 0
I.e. the two curves are tangent
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Lagrange Multipliers

The gradient connects this geometry to calculus

The gradient points in the direction of steepest ascent

I.e. f increases fastest from any point in that direction

And −∇f(x) is the direction of steepest descent

What if we travel perpendicular to ∇f(x)?

Intuitively, f(x) should be constant in this direction

So ∇f(x) is perpendicular to f(x) = a at x0

And ∇g(x) is perpendicular to g(x) = 0 at x0

And g(x) = 0 is parallel to f(x) = a at x0...

So ∇g(x0) and ∇f(x0) are parallel!

This allows us to find x0

Collin Cademartori Introduction to Data Science



Lagrange Multipliers

Let L(x, λ) = f(x)− λg(x)

This is called the Lagrangian

The λ variable is called the Lagrange multiplier

The solution to the constrained maximization

max
x

f(x) such that g(x) = 0

satisfies

∂

∂xi
L(x, λ) = 0 for all i

∂

∂λ
L(x, λ) = 0
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Lagrange Multipliers

L(x, λ) = f(x)− λg(x)

The condition ∂
∂xi
L(x, λ) = 0 ensures

∇f(x) = λ∇g(x)

This just states that the gradients are parallel

Also explains the need for the λ multipliers

The condition ∂
∂λL(x, λ) = 0 ensures ∇g(x) = 0

This just states that we satisfy the original constraint

Thus solving the Lagrangian ensures that we are within the
constraint and that the level sets of g and f are tangent at
the solution point

This is what characterized the maximum over our constaint
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Basic Probability

Now we will cover some basic probability

We will be interested in two kinds of random objects:

Random events (i.e. whether it will rain tomorrow)
Random variables (i.e. a stock’s price in a week)

For events A and B, we define

A ∩B to mean A and B happen (intersection)
A ∪B to mean A or B (or both) happen (union)
¬A to mean A does not happen (negation)
A ⊂ B to mean if A happens, B happens (inclusion)

We define two special events: Ω and ∅
Ω is the union of all events: “something happens”
∅ is the intersection of all events: “nothing happens”

For an event A, P(A) denotes the probability of A

We define P(A) to be between 0 and 1

A and B are disjoint if A ∩B = ∅ (“A and B can’t both
happen”)
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The Probability Axioms

Probability is defined by the following rules:

0 ≤ P(A) ≤ 1 for all events A
P(Ω) = 1 - “something always happens”
P(¬A) = 1− P(A) - “A either happens or it doesn’t”
If A and B are disjoint, then P(A ∪B) = P(A) + P(B)
If A ⊂ B, then P(A) ≤ P(B)

These rules have many consequences

For example, P(A ∪B) ≤ P(A) + P(B)

Let A \B be the event A happens but B does not
Observe that

P (A ∪B) = P ((A \B) ∪B) = P (A \B)+P(B) ≤ P(A)+P(B)
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Conditional Probability and Independence

Conditional probability is an extremely important concept

Let A and B be two events

We define the probability of B given A as

P(B | A) =
P(A ∩B)

P(A)

I.e. the proportion of cases in which A happens where B
also happens

Suppose B is an event that comes after A in time

Before A, we expect B to happen with probability P(B)

But before B occurs, A either happens or it doesn’t

This new information might be relevant to B

We now expect B to happen w/ probability P(B | A)

This kind of scenario comes up often in statistics
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Conditional Probability and Independence

We say that two events A and B are independent if

P(A | B) = P(A)

This is equivalent to P(B | A) = P(B)

“knowing that A happened gives no information about B”

And vice versa

Rearranging the definition of conditional probability:

P(A ∩B) = P(A)P(B | A) = P(B)P(A | B)

So if A and B are independent, we have

P(A ∩B) = P(A)P(B)

This is in fact equivalent to independence
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Bayes Rule

If we combine the facts that

P(A | B) =
P(A ∩B)

P(B)
and P (A ∩B) = P(B | A)P(A)

we get

P(A | B) =
P(B | A)P(A)

P(B)

This is known as Bayes rule

It often comes in an alternate form
Rewrite the denominator as

P(B) = P(B∩A)+P(B∩¬A) = P(B | A)P(A)+P(B | ¬A)P(¬A)

The verbose form of Bayes rule is then:

P(A | B) =
P(B | A)P(A)

P(B | A)P(A) + P(B | ¬A)P(¬A)
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Bayes Rule

P(A | B) =
P(B | A)P(A)

P(B | A)P(A) + P(B | ¬A)P(¬A)

The verbose form is a very useful formula

We can express one conditional in terms of the opposite

Often one form is much easier than the other

Causation only goes one direction

What is the probability of having a disease given a positive
test?

We can compute this if we know:

The probability of a positive test given disease
The probability of a positive test given no disease
The probability of disease overall

These are often much more readily known!
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Random Variables

In addition to events, we can consider random variables

These represent random about which we are uncertain

Future values we cannot yet know
Measurements that cannot be made exactly
Unobservable quantities defined by theory

We will define random variables to be random numbers

Possible to define more complex random objects

If X and Y are random variables, then

{X = a}
{a ≤ X ≤ b}
{f(X) ≤ g(Y )}

are (random) events

If X is a real number, we say it is continuous

If X is an integer, we say it is discrete
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Random Variables and Distributions

If X is a random variable, we don’t know its value

But we may know something about the process that
generates X

For example, we don’t know if it will rain tomorrow

But we know about previous weather conditions
Have a sense of when rain is likely and when it isn’t

May know certain values of X are more likely than others

This defines a probability distribution for X

Distributions tell us about the probability that a random
variables takes certain values
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Discrete Distributions

If X is discrete, then it’s value will be an integer

For each integer i, we can ask for P(X = i)

The function p(i) = P(X = i) is the probability mass
function for X

This function defines the distribution of X
I.e. it defines all possible probabilities for X

For example:

P(0 ≤ X ≤ 10) =

10∑
i=0

P(X = i) =

10∑
i=0

p(i)

Fundamental property of probability mass functions:

p(i) ≥ 0 and

∞∑
i=−∞

p(i) = 1
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Continuous Distributions

If X is continuous, it is some real number

No longer makes sense to compute P(X = x)

This probability must be zero!

What would the continuous analog of a pmf be?

p(x) ≥ 0 and

∫ ∞
−∞

p(x)dx = 1

Such a function is a probability density function

A density function also completely characterizes a
distribution

For example:

P(a ≤ X ≤ b) =

∫ b

a
p(x)dx
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